期刊文献+

管钟音高特征的有限元方法研究

FEM analysis of tubularbell pitch characteristics
原文传递
导出
摘要 提出了一种打击乐器——管钟的音高的计算方法。该方法以有限单元法为基础,通过计算管钟振动的各阶模态确定其定音频率。使用该方法研究了管钟音高特征与管长、管径和壁厚等几何参数的关系,得到了一系列反应频率和几何参数关系的曲线。另外,为了对计算结果进行实验检验,采集了管钟的声音,并通过快速Fourier变换对其频率特征进行了分析,其结果与计算结果显示出很好的一致性。该文提出的方法可用于乐器的设计和生产制造过程。 A finite element method was developed to calculate the tubularbell pitch by calculating the tubularbell vibration modes to determine the accordatura frequencies. The relationship between the pitch characteristics and the tube geometric parameters, including the diameters, lengths, and thicknesses, was investigated to obtain a series of frequency-geometry curves. Measurements of the tubularbell frequencies analyzed using fast Fourier transforms agree well with the calculational results, which shows that the method can be used in the design and manufacture of musical instruments.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第11期1953-1955,共3页 Journal of Tsinghua University(Science and Technology)
关键词 乐器制造 数值模拟 管钟 模态分析 音高特性 musical instrument manufacture numerical simulation tubularbell mode analysis pitch
  • 相关文献

参考文献6

  • 1高瑛,李朝运,刘艳馥.乐器制造业的当务之急[J].艺术科技,2005,18(1):49-50. 被引量:1
  • 2Rossing T D.The Science of Sound[M].Northern Illinois:Addison-Wesley Publishing Company,1983.
  • 3Askill J.Physics of Musical Sounds[M].New York:D.Van Nostrand Company,1979.
  • 4McLachlan N,Cabrera D.Calculated pitch sensations for new musical bell designs[C]//Proceedings of the 7th International Conference on Music Perception and Cognition.Sydney,2002:600-603.
  • 5吴永忠,韩江洪,程文娟,郑淑丽.基于物理模型的乐器仿真技术[J].系统仿真学报,2003,15(7):939-943. 被引量:1
  • 6GB/T3451-1982.标准调音频率[S].

二级参考文献47

  • 1Vedette C, Cuesta C. M6caaique de la corde vibrante[C]. Traite des Nouvelles Technologies (Serie Mecanique), Ed. Hermes, Paris, 1993.
  • 2Florensm J-L, Cadoz C. The Physical Model: Modeling and Simulating the Instrumental Universe[C]. Representation of Musical Signals edited by De Poli, G., Piccialli, A., Roads, G. MIT Press ISBN 0-262-04113-8 (hc), 1991: 227-268.
  • 3Rabenstein R. Trautmann L. Partial Differential Equation Models for Continuous Multidimensional Systems[C]. IEEE Int. Symposium on Circuits and Systems (ISCAS),Geneva, Switzerland, May 2000.
  • 4Rudolf Rabenstein. Discrete Simulation Models for Multidimensional Systems Based on Functional Transformations[C]. in J. G. McWirther(Hrsg.), Mathematics in Signal Processing IV, Oxford University Press, 1998.
  • 5Rudolf Rabenstein. Transfer Function Models of Multidimensional Systems[J]. Digest of IEE Coll. on Multidimensional Systems,London, 1998/225: 1/1-1/7.
  • 6Rudolf Rabenstein, Lutz Trautmann. A Transformation Domain Description for Nonlinear Partial Differential Equations[C]. Xth European Signal Processing Conference (EUSIPCO 2000),Tampere,Finland, Sept. 5-8, 2000.
  • 7Tychonoff A N, Samrski A A. Differentialalgleichungen der mathematischen Physik, VEB Deustscher Verlag der Wissenschaflen,Berlin, 1959.
  • 8Roads C, Pope S, Piccialli A, Poli G D. Musical Signal Processing[M].Swets & Zeitlinger, Lisse, 1997.
  • 9Vercoe Barry L, Gardner William G, Scheirer Eric D. Structured Audio: Creation, Transmission, and Tendering of Parametric Sound Representations and Tendering of Parametric Sound Representations[C]. Proceeding of The IEEE, 1998, 86(5).
  • 10Rabenstein Rudolf, Trautmann Lutz. Digital Sound Synthesis by Physical Modelling[M]. Symposium on Image and Signaling and Analysis (ISPA'01), Pula, Croatia, June 2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部