期刊文献+

具有非单调功能性反应的捕食系统的定性分析 被引量:3

Qualitative Analysis for Predator-Prey Systems with Simplified Holling Type-Ⅳ Functional Response
下载PDF
导出
摘要 研究了捕食者自身设限、食饵具有非单调功能性反应的捕食系统.在全参数空间内系统的定性分析表明,系统具有复杂的动力学行为,包括全局稳定、双稳定等.变化参数可使得系统没有极限环、存在1个或者2个极限环,而最多可以从Hopf分支产生出2个极限环,并给出了相应的数值模拟. A predator-prey model with simplified Holling type-Ⅳ functional response and predator's numerical response was considered. The qualitative analysis of the model depending on all parameters indicates that the model exhibits complicated dynamical phenomenon, such as a global attractor, two attractors etc. It is shown that there exist different parameter values for which the model has none limit cycle, one limit cycle, or two limit cycles, respectively and the model can have at most two limit cycles bifurcated from Hopf bifurcation. Some computer simulation was presented to illustrate the conclusions by XPPAUT.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2007年第5期848-851,共4页 Journal of Shanghai Jiaotong University
关键词 捕食系统 HOPF分支 极限环 predator-prey system Hopf bifurcation limit cycle
  • 相关文献

参考文献8

  • 1Wollkind D,Logan J.Temperature-dependent perdator-prey mite ecosystem on apple tree foliage[J].J Math Biol,1978,6(3):265-283.
  • 2May R.Stability and complexity in model ecosystems[M].Princeton:Princeton University Press,1973.
  • 3Hsu S,Huang T.Global stability for a class of predator-prey systems[J].Siam J Appl Math,1995,55(3):763-783.
  • 4Collings J.The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model[J].J Math Biol,1997,36(2):149-168.
  • 5刘宣亮,韩茂安.具有第类功能性反应的捕-食系统的定性分析[J].上海交通大学学报,2004,38(5):842-844. 被引量:3
  • 6Leslie P H.Some further notes on the use of matrices in population mathematics[J].Biometrika,1948,35(1):213-245.
  • 7Gasull A,Guillamon A.An explicit expression of the first Liapunov and period constants with applications[J].J Math Anal Appl,1997,211(1):190-212.
  • 8Ermentrout B.XPPAUT-The differential equations tool[M].Pittsburgh:University of Pittsburgh,1997.

二级参考文献2

共引文献2

同被引文献15

  • 1丁孝全,程述汉.一类具有时滞的比率依赖型捕食者-食饵系统周期正解的存在性(英文)[J].纯粹数学与应用数学,2006,22(1):111-117. 被引量:1
  • 2May R. Stability and Complexity in Ecosystem[M]. Princeton:Princetin University Press,1973.
  • 3Wiggins S. Introduction to Applied Nonlinear Dynamical System and Chaos[M].New York:Springer,1991.
  • 4Hale J K. Theory of Functional Diffential Equations [M]. New York:Springer-Verlag, 1997.
  • 5尤秉礼.常微分方程补充教程[M].北京:人民教育出版社,1982..
  • 6Lv S,Min Zhao.The dynamic complexity of a three species food chain model[J].Chaos,Solitons& Fractals,2008, (37):1469-80.
  • 7Sun Cheng jun, Lin Yi ping, Han Mao an. Stability and Hopf bifurcation for an epidemic disease model with delay[J].Chaos, Solitons& Fractals,2006, (30):204-216.
  • 8Zhiqi Lu, Xia Liu. Analysis of a predator-prey model with modified Holling-Tanner functional response and time delay[J]. Nonlinear Analysis:Real Applications,2008, (9):641-650.
  • 9马凤兴,林怡平.HollingⅢ型捕食者-食饵系统的动力学性质[J].昆明理工大学学报(理工版),2007,32(6):103-107. 被引量:3
  • 10邹娓,谢杰华.具有时滞和比率的Holling-Ⅲ Leslie系统的Hopf分支[J].南昌工程学院学报,2007,26(6):37-40. 被引量:2

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部