期刊文献+

基于多孔洞体胞模型的韧性材料损伤机制 被引量:1

The Damage Mechanisms of Ductile Materials Based on Multi-voids Cell Modles
下载PDF
导出
摘要 分别采用含100、50和25个随机分布微孔洞体胞模型,对体胞内应力分布和孔洞长大规律进行统计分析,在此基础上讨论采用含25个随机分布微孔洞体胞模型作为宏观材料代表性单元(RVE)来研究材料损伤机制的合理性,并对变形过程中体胞内各微孔洞演化过程进行了研究.结果表明:由于体胞内微孔洞的随机分布,造成孔洞周围基体材料最大三轴应力参数增加,从而导致该孔洞的快速增长,并带动周围微孔洞快速增长,这种孔洞的快速长大链式反应导致在很短的时间材料内出现大量微孔洞,并聚合形成微裂纹,直至试样最后失效,该结果较清楚解释了韧性材料圆棒试样只在颈缩阶段才会产生大量的微孔洞的试验现象的原因.含随机分布多微孔洞体胞模型能够用于分析周期分布微孔洞体胞模型无法反映的体胞内微孔洞非均匀发展的过程,因此更适合于研究韧性材料的损伤破坏机制. The statistic characteristic of the stress distribution and the equivalent stress evolution were in vestigated for the cell models with 100, 50 and 25 random distribution voids. The rationality that the eel model with random dispersion voids was thought as the representative volume element (RVE) of the mac roscopic materials to describe the mechanical behaviors of ductile material was discussed. On the base o the results, of the voids the triaxialit f the evolution procedure for every void in the cell model was analyzed. The random dispersion led to the non-uniformed stress state for the matrix materials around the voids. The increase of y stress parameter of the matrix materials causes the sharply growth of the void. Then it will drive the adjacent voids to grow quickly. The chain response of the rapid growth leads to the formation of a great many of voids in the necking stage. As the growth and coalescence of voids happen continuously, the materials failed finally. The triaxiality stress parameter has important influence on the growth of the voids in the ductile materials. The cell model with random distribution voids can describe the non-uniformed evolution and fracture procedure of the ductile materials more than that with periodical distribution voids.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2007年第6期978-982,987,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(10472092) 航空基础科学基金(04C53027)资助项目
关键词 损伤机制 多微孔洞 随机分布 三轴应力参数 统计分析 damage mechanism multi-voids random distribution triaxiality stress parameter statistic analysis
  • 相关文献

参考文献12

  • 1Rice J R, Tracy D M. On the ductile enlargement of voids in triaxials stress fields [J]. Journal of the Mechanics and Physics of Solids, 1969, 17:201-217.
  • 2McClintock F A. A criterion for ductile fracture by the growth of holes [J]. Journal of Applied Mechanics, 1968,35:363-371.
  • 3Gurson A L. Continuum theory of ductile rupture by void nucleation and growth. Part Ⅱ : Yield criteria and flow rules for porous ductile media [J]. Journal of Engineering. Materials and Technology,1977,99:2-15.
  • 4Tvergaard V. On localization in ductile materials con-taining voids [J]. International Journal of Fracture, 1982,18:237-251.
  • 5Needleman A, Kushner A S. An analysis of void dis-tribution effects on plastic flow in porous solids [J]. European Journal of Mechanics A/Solids, 1990,9:193-206.
  • 6Kuna M, Sun D Z. Three-dimensional cell model analyses of void growth in ductile materials[J]. International Journal of Fracture, 1996,81:235-258.
  • 7Zhang K S, Bai J B, Francois D. Ductile fracture of materials with high void volume fraction [J]. International Journal of Solids and Structures, 1999,36:3407-3425.
  • 8Thomson C, Worswick M J, Pilkey A K, et al. Modeling void nucleation and growth within periodic clusters of particles [J]. Journal of the Mechanics and Physics of Solids, 1999,47:1-26.
  • 9Magnusen P E, Dubensky E M, Koss D. The effect of void arrays on void linking during ductile fracture [J]. Acta Metallurgica, 1988,36(6):1503-1519.
  • 10Becker R, Smelser R E. Simulation of strain localization and fracture between holes in an aluminum sheet [J]. Journal of the Mechanics and Physics of Solids, 1994,42:773-796.

二级参考文献3

  • 1橡胶工业编写组.橡胶工业手册:第八分册[M].北京:化学工业出版社,1992.405-480.
  • 2Rivlin R S. Large elastic deformations of isotropic material. I. Fundamental concepts [J]. Phil Trans Soc, 1948,48(3):240-490.
  • 3Finney R H, Kumar A. Development of material constants for nonlinear finite element analysis [J]. Rubber Chemistry and Technology, 1988, 61(5):879- 891.

同被引文献10

  • 1WANG H, LI Z. Diffusive shrinkage of a void within a grian of a stressed polycrystal[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(5): 961-976.
  • 2Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710.
  • 3Martin J W, Doberty R D, Cantor B. Staibility of microstructure in metallic system[M]. New York: Cambridge University Press, 1976.
  • 4Yu Q, Shan Z W, Li J, et al. Strong crystal size effect on deformation twinning[J]. Nature, 2010, 463(21): 335-338.
  • 5Salac D, Lu W. Stability and shape evolution of voids and channels due to surface misfit[J]. International Journal of Solids and Structures, 2008, 45(13): 3793-3806.
  • 6Li Z H, Steinmann P. RVE-based studies on the coupled effects of void size and void shape on yield behavior and void growth at micron scales[J]. International Journal of Plasticity, 2006, 22(7): 1195-1216.
  • 7Ma Q. Non-linear capillary shape evolution of rod morphologies via interfacial diffusion[J]. Acta Materialia, 1998, 46(5): 1669-1681.
  • 8Rice J R, Chuang T J. Energy variations in diffusive cavity growth[J]. Journal of the American Ceramic Society, 2010,64(1): 46-53.
  • 9张永军,韩静涛,刘靖,余万华.金属材料内部裂纹愈合形态演化过程的扩散热力学分析[J].塑性工程学报,2008,15(2):122-125. 被引量:4
  • 10解海鸥,马寒松,魏悦广.颗粒增强复合材料的界面开裂与尺度效应[J].固体力学学报,2008,29(1):1-6. 被引量:8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部