期刊文献+

向量函数空间上两个极限圆型微分算子乘积的自伴性 被引量:1

On Self adjointness of the Product of Two Limit circle Differential Operators in Vector Function Spaces
下载PDF
导出
摘要 讨论了在L2向量函数空间上由奇异形式自伴微分表达式定义的极限圆型乘积算子的最大算子域构造定理,并在此基础上得到了其自伴域的解析描述.乘积算子T=T2T1自伴的充分必要条件是A1Q-1(0)A*2=B1JB*2,其中Ai,Bi(i=1,2)决定了乘积算子的边界条件,即乘积算子自伴性由其边条件的性质唯一决定. In the first,the structure of the maximum operator domains under the assumption that the limit circle product operator defined in L 2 vector function spaces are described.And then the analytical description of the corresponding self adjoint extention domains is obtained.The sufficient and necessary condition on self adjointness of the product operator T=T 2·T 1 is A 1Q -1 (0)A * 2=B 1JB * 2, where A i,B i(i=1,2) determine the boundary conditions of the product operator.That is,the self adjointness of the product operator is determined only by its boundary conditions.
作者 张宏坤
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 1997年第5期585-591,共7页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金 内蒙古自然科学基金
关键词 向量函数空间 微分算子 乘积 自伴性 formal self adjoint differential expression self adjoint domain product operator
  • 相关文献

参考文献2

  • 1李文明,内蒙古大学学报,1991年,22卷,4期,447页
  • 2曹之江,数学学报,1985年,28卷,2期

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部