期刊文献+

A note on the Marcinkiewicz integral operators on F_p^(α,q) 被引量:3

A note on the Marcinkiewicz integral operators on F_p^(α,q)
下载PDF
导出
摘要 In this paper, we shall prove that the Marcinkiewicz integral operator #n, when its kernel Ω satisfies the L^1-Dini condition, is bounded on the Triehel-Lizorkin spaces. It is well known that the Triehel-Lizorkin spaces are generalizations of many familiar spaces such as the Lehesgue spaces and the Soholev spaces. Therefore, our result extends many known theorems on the Marcinkiewicz integral operator. Our method is to regard the Marcinkiewicz integral operator as a vector valued singular integral. We also use another characterization of the Triehel-Lizorkin space which makes our approach more clear. In this paper, we shall prove that the Marcinkiewicz integral operator μ, when its kernel satisfies the L1-Dini condition, is bounded on the Triebel-Lizorkin spaces. It is well known that the Triebel-Lizorkin spaces are generalizations of many familiar spaces such as the Lebesgue spaces and the Sobolev spaces. Therefore, our result extends many known theorems on the Marcinkiewicz integral operator. Our method is to regard the Marcinkiewicz integral operator as a vector valued singular integral. We also use another characterization of the Triebel-Lizorkin space which makes our approach more clear.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期2037-2040,共4页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project (No.10601046) supported by the National Natural Science Foundation of China
关键词 Marcinkiewicz integral Triebel-Lizorkin spaces Fourier transtforms 函数构造论 积分 运算符 数学
  • 相关文献

参考文献4

二级参考文献34

  • 1徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性——本构模型[J].岩土力学,1993,14(4):1-15. 被引量:22
  • 2Chen Jiecheng,Fan Dashan,Ying Yiming. Certain operators with rough singular kernels,Canad J Math, 2003,55 (3) : 504-532.
  • 3Calderon A P,Zygmund A. On singular integrals with variable kernels ,Appl Anal, 1978,7:221-238.
  • 4Frazier M,Jawerth B,Weiss G. Littlewood-Paley Theory and Study of Function Spaces,AMS-CBMS Regional Conf. Ser. ,Vol. 79,Conf. Board Math. Sci. ,Washington,D. C.
  • 5Han S Y, Paluszynski M, Weiss G. A new atomic decomposition for the Triebel-Lizorkin spaces,Harmonic Analysis and Operator Theory, (Caracas, 1994), 235-249 ,Contemp Math, 189 ,Amer Math Soc,Providence,RI, 1995.
  • 6Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals,Princeton NJ : Princeton University Press, 1993.
  • 7Triebel H. Theory of Function Spaces, Monographs in Mathematics, Vol. 78, Basel, Birkhauser Verlag, 1983.
  • 8Wheeden R L. On hypersinguler integrals and Lebesgue spaces of differentiable functions I ,Trans Amer Math Soc, 1969,37-53.
  • 9Benedek A, Calder6n A P, Panzone R. Convolution operators on Banach space valued functions. ProcNat Acad Sci, 1962, 48:356-365
  • 10Chanillo S, Wheeden R L. Inequality for Peano maximal functions and Marcinkiewicz integrals. Duke Math Jour, 1983, 50:573-603

共引文献96

同被引文献4

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部