期刊文献+

基于航迹误差预测模型的船舶自适应控制 被引量:8

Ship self-adaptive control based on predicting tracking error model
原文传递
导出
摘要 为提高船舶控制精度,根据船舶航迹、航向、航速、舵角特性和历史数据,采用卡尔曼滤波进行误差预测估计,利用反传多层感知器自适应网络建立船舶航迹误差预测模型,并采用舵角、航向、航迹三层串级回路系统结构,完成自动舵控制功能.在风浪干扰、改变船舶模型的回转性指数、追随性指数、延迟因子和积分因子情况下,该系统以较少的舵角动作迅速收敛,减小了航迹的波动幅度和次数,使船舶航迹与预定航线更加拟合.仿真结果表明,在模型失配情况下,该系统仍可保持稳定的输出和光滑的控制作用,具有较好的鲁棒稳定性和良好的动态调节品质. To improve the controlling precision of ships, a dynamically predictive model was established based on the parameter characteristics of ship's tracking error, course, speed, rudder angle as well as history data for these variables. Kalman filter and a back propagation multi-layer perceptrons adaptive neural network were also adapted into the predictive model, and a new autopilot configuration was established using 3 feedback loops in a cascade arrangement which performed a relatively optimal control function. The autopilot based on prediction model can converge quickly with less rudder actions when the turning ability index, turning lag index, time delay factor, and integrating factor are changed. The method can reduce the amplitude and frequency of rudder fluctuation and make the ship' s track fit the scheduled course better compared with other methods. Simulation results show that a stabilized output and a smooth control can still be hold even under the model mismatches and the load disturbance , which demonstrates good robust stability and dynamic regulating performance.
作者 张桂臣 任光
出处 《大连海事大学学报》 EI CAS CSCD 北大核心 2007年第4期37-41,共5页 Journal of Dalian Maritime University
基金 高等学校博士学科点专项科研基金资助项目(20030151005)
关键词 船舶航向 航迹控制 误差预测 神经网络 卡尔曼滤波 ship's course track control error predication neural network Kalman filter
  • 相关文献

参考文献9

二级参考文献15

  • 1李铁山,杨盐生,郑云峰.不完全驱动船舶航迹控制输入输出线性化设计[J].系统工程与电子技术,2004,26(7):945-948. 被引量:27
  • 2李铁山,杨盐生.基于耗散理论的不完全驱动船舶直线航迹控制设计[J].应用科学学报,2005,23(2):204-208. 被引量:7
  • 3贾欣乐,张显库.H_∞控制器应用于船舶自动舵[J].控制与决策,1995,10(3):250-254. 被引量:31
  • 4Li Tieshan Yang Yansheng Hong Biguang.Adaptive robust dissipative designs on straight path control for underactuated ships[J].Journal of Systems Engineering and Electronics,2006,17(1):177-181. 被引量:3
  • 5贾欣乐 杨盐生.船舶运动数学模型[M].大连:大连海事大学出版社,1999..
  • 6MOODY J,DARKEN C.Fast learning in networks of locally-tuned processing units [J]. Neural Computation, 1989,1(2):281-284.
  • 7ROGER JANG J S,SUN C T.Functional equivalence between radial basis function networks and fuzzy inference systems [J]. IEEE Trans on Neural Networks, 1993,4(1):156-159.
  • 8李士勇.模糊控制·神经网络和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996.(LI Shiyong. Fuzzy Control,Neural Networks and Intelligent Control [M].Harbin:Harbin Industry University Press,1996.)
  • 9AHMED M S.Neural-net-based direct adaptive control for a class of nonlinear plants[J].IEEE Trans on Neural Networks,2000,45(1):119-124.
  • 10WANG Da-zhi,WANG Zhen-lei.Identification and control of induction motor using artificial neural network[C]//Proceeding of the Fifth International Conference on Electrical Machines and Systems,Shengyang:the International Academic Publishers of World Publishing Corporation,2001:751-754.

共引文献65

同被引文献59

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部