期刊文献+

高阶半离散中心迎风方法的研究与应用

Research and Application of a Semi-discrete Central-upwind Scheme
下载PDF
导出
摘要 结合四阶Central Weighted Essentially Non-Oscillatory格式、三阶Central-Upwind格式构造了一种新的四阶半离散中心迎风差分方法求解双曲守恒律、浅水波方程及有关问题.而且由于数值粘性与时间步长无关,从而在涉及到对流扩散方程的求解时时间步长可根据稳定性需要尽可能的小. A new fourth-order semi-discrete central-upwind scheme was constructed for hyperbolic system of conservation laws, convection-diffnsion equations and shallow water equations. The integration over the Riemann fans by more accurate information about one-sided local speed of wave propagation was augmented. By using the fourth-order CWEN0 reconstruction, the new scheme has the properties of higher order accuracy and higher resolution for discontinuities. Because the new scheme has less dissipation, which is" independent of time-steps, than the staggered central scheme, it can be efficiently used with time-steps as small as the requirement of the numerical stability.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2007年第4期412-415,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省自然基金项目(072300410320) 河南工业大学校科研基金项目(06XJC039)
关键词 双曲守恒律 浅水波方程 半离散中心迎风 hyperbolic conservation laws shallow water equation semi-discrete central-upwind
  • 相关文献

参考文献3

二级参考文献31

  • 1ShiJin,XinWen.AN EFFICIENT METHOD FOR COMPUTING HYPERBOLIC SYSTEMS WITH GEOMETRICAL SOURCE TERMS HAVING CONCENTRATIONS[J].Journal of Computational Mathematics,2004,22(2):230-249. 被引量:3
  • 2[1]D Levy, G Puppo and G Russo. Central WENO schemes for hyperbolic systems of conversation laws [ J ]. Appl. Numer.Math. Anal. 1999, 33, pp. 547 - 571.
  • 3[2]A Kurganov and E Tadmor. New high -resolution central schemes for nonlinear conservation laws and convectiondiffusion equations[J]. J. Comput. Phys. 2000, 160, pp.241 - 282.
  • 4[3]A Kurganov and D Levy. A third - order semi - discrete central scheme for conservation laws and convection -diffusion equations[J]. SIAM J. Sci, Comput. 2000, 22, pp. 1461 -1488.
  • 5[4]A Kurganov ,S Nolle and G Petrova. Semi - discrete central- upwind scheme for hyperbolic conservation laws and Hamilton - Jacobi equations [ J ]. SIAM J. Sci. Comput. 2001,23, pp. 707 - 740.
  • 6[5]S Gottlieb, C - W Shu and E Tadmor. Strong stability - preserving high order time discretization methods[ J]. SIAM Review. 2001,43 ,pp89 - 112.
  • 7R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods:the quasi-steady wave-propagation algorithm, J. Comp. Phys., 146 (1998), 346-365.
  • 8B. Perthame, C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term,CALCOLO, 38:4 (2001), 201-231.
  • 9Ch. Makridakis and Th. Katsaounis, Relaxation models and finite element schemes for the shallow water equations, in Hyperbolic Problems: Theory, Numerics, Applications, Proceedings of the Ninth International Conference on Hyperbolic Problems held in CalTech, Pasadena, March 25-29,2002 Hou, Thomas Y.; Tadmor, Eitan (Eds.).
  • 10J.J. Quick, Int. J. Num. Methods Fluids 18, 555 (1994).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部