摘要
利用隐函数定理和Wu-Ritt方法给出了多项式隐函数在一点邻域内的一种近似显式算法,并给出了根据要求精度计算邻域半径和迭代次数的关系式.使得这种算法的误差具有可控性,计算量小,容易上机实现,在理想的近似参数化及近似定理证明中有进一步的应用.
Based on implicit mapping theorem and Wu Ritt method, an approximated explicit algorithm of polynomial implicit mapping is given in a neighborhood of a given point, and formulas of computing the radius of neighborhood and iterative times are presented according to the required precision. This makes the error of the algorithm controllable and implementation easy. It is useful in approximated parametrization of ideal and approximated theorem proving.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第3期49-57,共9页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金
关键词
隐函数
符号计算
近似显式
多相式隐函数
逼近
implicit mapping iterative method symbolic computation approximate explicit neighborhood characteristic sets approximated symbolic computation