期刊文献+

零价铁表面积对泥浆反应体系中硝基苯降解行为的影响 被引量:19

Effects of Iron Surface Area on Reduction of Nitrobenzene-Contaminated Sediment in Slurry Reaction System
下载PDF
导出
摘要 硝基苯能够被零价铁还原成为苯胺.利用气相色谱分析方法,研究了泥浆体系中零价铁表面积对硝基苯污染底质降解行为的影响.结果表明,在沉积物中初始w(硝基苯)为8.87μg/g,按照3.27 g/L最佳比例投加还原铁粉,经2 h反应约有97%的硝基苯被降解;其还原机理为表面接触反应,铁粉总表面积是影响硝基苯降解的主要参数;沉积物中硝基苯降解速率常数(K)和残留量(y)与单位体积泥浆中零价铁总表面积(ρa)之间表现为线性和负指数相关性,其关系式分别为:K=0.006 5+5.165 87×10-4ρa和y=8.57exp(-ρa/7.66)+0.25;零价铁还原硝基苯的降解过程,其降解动力学符合准一级方程,并且通过SEM扫描电镜发现零价铁在反应过程中表面被严重腐蚀,颗粒组成发生明显改变. Nitrobenzene can be reduced to aniline by zero-valent iron metal. Effects of iron surface area on the reduction of nitrobenzene contaminated sediment were investigated by the GC analytical method in slurry reaction system. The results showed that under the conditions that the initial concentration of nitrobenzene in sediment was 8.87 μg/g and the optimum loading of iron was 3.27 g/L, more than 97% of nitrobenzene was degraded after 2 hours. The mechanism of nitrobenzene reduction by iron metal was demonstrated as surface mediated catalysis reaction, and the concentration of iron surface area in slurry was the most insignificant variable influencing the reduction. In the process of the reduction of nitrobenzene, a linear correlation was formulated between the iron surface concentrations and reaction constants, while the residual nitrobenzene in sediment decreased negative exponentially with the concentration of iron surface area, being shown as K = 0.006 5 + 5.165 87 × 10^-4 ρ and y = 8.57exp( - ρ/7.66) + 0.25 irrespectively. The data of the kinetic experiment fitted well to the pseudo first-order kinetic model, while the serious corrosion on surface of iron and variety of the constitute of iron powder reduced were observed by SEM technology.
出处 《环境科学研究》 EI CAS CSCD 北大核心 2007年第6期106-109,共4页 Research of Environmental Sciences
基金 国家重点基础研究发展计划(973)项目(2004CB418501) 科技部平台专项(2004DEA70890)
关键词 零价铁 表面积 硝基苯 污染底质 降解 zero-valent iron specific surface area nitrobenzene contaminated sediment reduction
  • 相关文献

参考文献28

  • 1WHO. Nitrobenzene (Environmental Health Criteria 230) [ Z]. Geneva: World Health Organization, 2003.
  • 2Camara E, Leder A E, Ishikawa Y. CEH data summary: nitrobenzene[ M]//SRI International. Chemical economics handbook. California: Menlo Park, 1997.
  • 3Yoshida K, Shigeoka T, Yamauchi F. Estimation of environmental fate of industrial chemicals [ J ]. Toxicol Environ Chem, 1988, 17 : 69-85.
  • 4He M C, Sun Y, Xing R L, et al. Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water, suspended particulate matter and sediment from mid- and down-stream of the Yellow River (China)[J]. Chemosphere, 2006(3): 365-374.
  • 5Gerlach R, Steiof M, Zhang C L, et al. Low aqueous solubility electron donors for the reduction of nitroaromatics in anaerobic sediments[J]. J Contam Hydrol, 1999, 36: 91-104.
  • 6Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal [ J ]. Environ Sci Technol, 1996, 30: 2634-2640.
  • 7Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal[J]. Environ Sci Technol, 1996, 30: 153- 160.
  • 8Antoine G. Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron power [ J ]. Chemosphere, 2001, 43: 1109-1117.
  • 9Tyrovola K, Nikolaidis N P, Veranis N, et al. Arsenic removal from geothermal waters with zero-valent iron-effect of temperature, phosphate and nitrate[J]. Water Res, 2006, 40: 2375-2386.
  • 10Alowitz M J, Scherer M M. Kinetcs of nitrate, nitrite, and Cr (Ⅵ) reduction by iron metal[ J]. Environ Sci Teehnol, 2002, 36: 299- 306.

二级参考文献16

  • 1Razo-Flores E. Biotransformation and biodegradation of N-sub- stituted aromatics in methanogenic granular sludge [D]. The Netherlands: Wageningen Agriculture University, 1997.
  • 2Johnson T L, Scheres M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal [J]. Environ. Sci. Technology, 1996,30(8):2634-2640.
  • 3Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry [M]. New York: John Wiley and Sons, Inc., 1993.109-156.
  • 4Kuiter A T, Mulder W. Water-soluble organic matter in forest soils [J]. Plant and Soil, 1993,152(2):215-224.
  • 5Kaiser K, Zech W. Rate of dissolved organic matter release and sorption in forest soils [J]. Soil Sci., 1998,163(9):714-725.
  • 6Hinrich L B, Brian L M, George A O. Soil Chemistry [M]. New York: John Wiley and Sons, Inc., 1985.50-151.
  • 7Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal[J]. Environ Sci Technol, 1996, 30(1):153-160.
  • 8Hui-ming H, Ling F H, Hoffmann M R. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound[J]. Environ Sci Technol, 2000, 34(9): 1758-1763.
  • 9王咏梅,林朝阳,李克安,魏永巨,童沈阳.紫外光谱多元线性回归法同时测定硝基苯与亚硝基苯和苯胺[J].理化检验(化学分册),1997,33(1):16-17. 被引量:11
  • 10肖羽堂,王继徽.二硝基氯苯废水预处理技术研究[J].化工环保,1997,17(5):264-267. 被引量:42

共引文献42

同被引文献243

引证文献19

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部