摘要
证明有限群G是幂零的,如果满足:G′幂零,G有素数r阶自同构α使得rπ(CG(α)),并且G有α-不变的幂零极大子群H使得CG(α)≤Φ(H)且H的Sylow2-子群的幂零类≤2.该结果推广了Thompson定理.
It is proved that a finite group G is nilpotent if G′ is nilpotent and G has prime r order automorphism a such that r∈r(CG(a)) for a-invarant nilpotent maximal subgroup H of G with CG(a) ≤Ф(H) and c(H2)≤2. This conclusion generalizing the theorem of Thompson.
出处
《广西科学》
CAS
2007年第4期332-333,共2页
Guangxi Sciences
基金
广西科学基金项目(0575050
0640061)
广西研究生教育创新计(2007106020701M51)资助
关键词
有限群
自同构
极大子群
幂零群
finite group, automorphism, maximal subgroup, nilpotent group