期刊文献+

梨果实贮藏中可溶性果胶和半纤维素分子结构的变化 被引量:5

Changes in Molecular Structure of Soluble Pectin and Hemicellulose During Storage of Pear Fruits
下载PDF
导出
摘要 为了解分子结构变化与耐藏性的关系,以耐贮性不同的苹果梨和新高梨为试材,利用Ultrogel AcA22凝胶柱渗漏分离,比较了梨贮藏中可溶性果胶和半纤维素分子大小的变化。结果表明,苹果梨的半纤维素分子大于新高梨。在贮藏过程中,耐贮性强的苹果梨果实可溶性果胶分子大小变化不明显,但半纤维素分子明显变小。相反,新高梨的可溶性果胶分子明显变小,而未观察到半纤维素分子大小的变化。说明梨的耐贮性与可溶性果胶分子结构变化及半纤维素分子大小有关,而与半纤维素分子结构变化没有直接关系。 To study the relation between molecular structure and storage potential of pear fruit, the ‘Pingguoli' and ‘Niitaka' species that have different storage potential, were used as materials for comparing the size change in pear soluble pectin and hemicellulose during storage stage using Uhrogel AcA 22 gel filtration profile method. The results showed that the hemicellulose size of ‘Pingguoli' significantly bigger than that of ‘Niitaka'. The soluble pectin molecular size in ‘Pingguoli' was not significantly different in during storage stage, but the molecular size of hemicellulose significantly changed smaller. Instead, the soluble pectin molecular size of ‘Niitaka' significantly changed smaller, at the same time without changes in the molecular size of hemicellulose. So the pears storage potential was related to the changes of molecular structure of soluble pectin and molecular size of hemicellulose, without direct relation to the molecular structure of hemicellulose.
出处 《园艺学报》 CAS CSCD 北大核心 2007年第6期1525-1530,共6页 Acta Horticulturae Sinica
关键词 贮藏 可溶性果胶 半纤维素 分子大小 Pear Storage Soluble pectin Hemicellulose Molecular size
  • 相关文献

参考文献12

  • 1Blumenkrantz N, Asboe-Hanson G. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. , 54:484 -489.
  • 2Chun J P, Hwang Y S, Lee J C, Huber D J. 1999. Cell wall component changes during maturation and storage in ' Tsugaru' and ' Fuji' apple fruits. J. Kor. Soc. Hort. Sci., 40:705-710.
  • 3Dubois M K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related subs-tances. Anal. Chem. , 28 : 350 - 356.
  • 4Huber D J. 1983a. The role of cell wall hydrolases in fruit softening. Hort. Rev. , 5:169 -219.
  • 5Huber D J. 1983b. Polyuronide degradation and hemicellulose modification in ripening tomato fruit. J. Amer. Soc. Hort. Sci. , 108 : 405 -409.
  • 6Huber D J. 1984. Strawberry fruit softening: The potential role of polyuronide and hemicelluloses. Food Sci. , 49:1310 -1315.
  • 7Hwang Y S, Huber D J, Albrigo L G. 1990. Comparison of cell wall components in normal and disordered juice vesicles of grape fruits. J. Amer. Soc. Hort. , 115:281-287.
  • 8Kang I K, Chang K H, Byun J K. 1998. Solubilization and depolymerization of pectic and neutral sugar polymers during ripening and softening in persimmon fruits. J. Kor. Soc. Hort. Sci., 39 (1): 51-54.
  • 9Kim H C, She Z S, Kim S K, Sin Y E. 1997. High efficiency planting technology and manage of pear. Korea: Korea Peasantry Newspaper Office.
  • 10Kim J S, Byun J K. 1995. Role of β-galactosidase on the solubilization and degradation of pectin in pear fruit. J. Kor. Artic-le Publication Gist, 13 (1): 394-395.

同被引文献62

引证文献5

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部