期刊文献+

用分数阶微分提取图像边缘 被引量:13

Fractional differential for edge extraction
下载PDF
导出
摘要 文章是分数阶微分在图像处理中的尝试性应用。首先通过理论上分析得出分数阶微分可以大幅提升信号高频成分,增强信号的中频成分,非线性保留信号的甚低频。据此分析得出分数阶微分应用于图像边缘信息提取将获得高于传统基于一、二阶微分的方法的信噪比。然后由经典的分数阶微分定义出发,推导出了分数阶差分方程,构建了近似的分数阶Tiansi微分模板。最后通过图像边缘提取的实验表明:基于分数阶微分算子不仅可以有效提取图像边缘,而且比整数阶微分算子具有更高的信噪比。为拓展分数阶微分的应用领域,进行了有意义的探索。 This paper is an attempted application of fractional differential in image processing.Firstly through theoretical analysis gets the conclusion that fractional differential can greatly improve high frequency,reinforce medium frequency and non-linear preserve low frequency of signals.According to the theoretical analysis gets result that fractional differential operator has higher SNR than traditional first and second differential operators to extract edge information.Then using classical fractional differential G-L definition deduces fractional order differential difference function and constructs an approximate fractional order differential Tiansi module.Finally edge extraction experiments show that fractional differential operator not only can effectively extract edge information but also has higher SNR than integer differential operators.This paper attempts to expand application areas of fractional differential and carry outs a significant exploration.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第35期15-18,共4页 Computer Engineering and Applications
基金 国家自然科学基金(The National Natural Science Foundation of China under Grant No.60572033) 教育部博士点基金( No.20020610013) 。
关键词 分数阶微分 边缘检测 微分阶数 掩模模板 fractional differential edge detection differential order cover module
  • 相关文献

参考文献17

  • 1Loverro A.Fractional calculus:history,definitions and applications for the engineer[D].USA:University of Notre Dame,2004.
  • 2Leu J S,Papamarcou A.On estimating the spectral exponent of fractional Brownian motion[J].IEEE Trans IT, 1995,41 ( 1 ) : 233-244.
  • 3Liu Szu-Chu, Chang Shyang.Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification[J].IEEE Trans on Image Processing, 1997,6(8) : 1176-1184.
  • 4Oldham K B,Spanier J.The fractional calculus[M].New York :Academic Press, 1974.
  • 5Podlubny I.Fractional differential equations[M]//Mathematics in Science and Engineering.[S.l.]:Academic Press,1999.
  • 6Marr D,Hildreth E.Theory of edge detection[C]//Proceedings of the Royal Society of London, Series B, Biological Sciences,February 1980: 187-217.
  • 7Jeong H,Kim C.Adaptive determination of filter scales for edge detection[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1992,14(5 ) :579-585.
  • 8Turgut A Y,Yemez E A,Bulem S.Muhidirectional and multiscale edge detection via M-band wavelet transform[J].IEEE Trans Image Processing, 1996,5 (9).
  • 9Elder J H,Zucher S W.Local scale control for edge detection and blur estimation[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1998,20 (7) : 699-716.
  • 10Andrew P P.Directional filtering in edge detection[J].IEEE Trans Imaging Processing, 1998,7(4).

同被引文献103

引证文献13

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部