期刊文献+

改进型蚁群算法的多处理机任务调度研究 被引量:6

Research of multiprocessors scheduling policy based on improved ant colony algorithm
下载PDF
导出
摘要 蚁群算法是一种新型的模拟进化算法,具有正反馈、分布式计算等特点,是一种解决组合优化问题的有效算法。在介绍蚁群算法基本原理以及探讨该算法的缺陷基础上,针对多处理器任务调度问题,提出了一种基于改进型蚁群算法的调度策略。仿真研究表明,该算法具有优良的全局优化性能,效果令人满意。 Ant Colony Algorithm (ACA) is a novel simulated evolutionary algorithm with the characteristic of positive feedback and distributed computation,it is also a neffective algorithm to solve combinatorial problems.After the basic theory of ACA is introduced,a multiprocessors scheduling policy based on an improved ant colony algorithm is proposed in this paper.The simulation results show that the ACA has excellent global optimization properties,and the effect of simulation is satisfactory.
作者 张勇 张曦煌
出处 《计算机工程与应用》 CSCD 北大核心 2007年第35期74-76,共3页 Computer Engineering and Applications
关键词 蚁群算法 多处理器 调度 Ant Colony Algorithm(ACA ) multiproeessors scheduling
  • 相关文献

参考文献12

  • 1Ramamritham K.Scheduling algorithms and operating systems support for real-time systems[J].Proceedings of IEEE, 1994,82( 1 ): 55-67.
  • 2Shin K G,Ramanathan R.Real-time computing a new discipline of computer science and engineering[J].Proceedings of IEEE,1994,82 (1):6-24.
  • 3Dorigo M,Maniezzo V,Colorni A.The ant system:optimation by a colony of cooperating agents[J].IEEE Transactions on Systems, Man, and Cybenetics, 1996,26( 1 ) : 1-13.
  • 4Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactionson Evolutionary Computation, 1997,1 ( 1 ) :53-66.
  • 5Dorigo M,Gambardella L M.Ant colonies for the traveling salesman problem,Technical Report/IRIDIA/96-3[R].Belgium:Universite Libre de Bruxelles, 1996.
  • 6Gambardella L M,Taillard E,Dorigo M.Ant colonies for the quadratic assignment problem[J].Journal of the Operational Research Society, 1999,50: 167-176,
  • 7Colorni A,Dorigo M,Maniezzo V.Ant system for job-shop scheduling[J].Belgian Journal of Operations Research,Statistics and ComputerScience, 1994,34( 1 ) :39-54.
  • 8陈崚,沈洁,秦玲,陈宏建.基于分布均匀度的自适应蚁群算法[J].软件学报,2003,14(8):1379-1387. 被引量:111
  • 9Stutzle T,Hoos H. MAX-MIN ant system[J].Futrure Generation Computer System,2000,16:889-914.
  • 10Dorigo M,GambardellaL M.Solving symmetric and asymmetric TSPs by ant colonies[C]//Proceedings of the IEEE Conference on Evolutionary Computation,Nagoya,Japan, 1996:622-627.

二级参考文献7

共引文献155

同被引文献42

  • 1文军,李冰,王清蓉,杜文.机场停机位分配问题的图着色模型及其算法[J].系统工程理论方法应用,2005,14(2):136-140. 被引量:17
  • 2彭莉娟,吴鹍,余静.机场跑道最大容量评估模型的研究[J].四川大学学报(自然科学版),2006,43(5):1018-1022. 被引量:27
  • 3陈团生,毛保华,姚宪辉,陈俊励.基于多目标规划的机场跑道运行模拟与优化[J].系统仿真学报,2007,19(12):2849-2851. 被引量:2
  • 4黄席樾,张著洪,何传江,等.现代智能算法理论及应用[M].北京,科学出版社.2004.
  • 5T Stutzle,H Hoos. Improvments on the Ant System: Introducing MAX-MIN ant System [C ]//Proceeding of the International Conference on Artifical Neural Networks and Genetic Algorithms,Springer Verlag Wien. 1997.245-249.
  • 6廖飞雄,马良.图着色问题的启发式搜索蚂蚁算法[J].计算机工程,2007,33(16):191-192. 被引量:16
  • 7Dorndorf U, Jaehn F, Pesch E. Modelling Robust Flight- Gate Scheduling as a Clique Partitioning Problem[J]. Transportation Science,2008,42(3) :292-301.
  • 8Hu X B, Paolo E D. Genetic Algorithms for the Airport Gate Assignment: Linkage, Representation and Uniform Crossover[J]. Linkage in Evolutionary Computation, 2008, 157: 361-387.
  • 9Ding H, Lira A, Rodrigues B, et al. New Heuristics for Over-constrained Flight to Gate Assignments[J]. Journal of the Operational Research Society, 2004, 55 (7) : 760-768.
  • 10Lim A, Wang F. Robust Airport Gate Assignment[C]//Proc of the 17th Int'l Conf on Tools with Artificial Intellignece, 2005 : 74-81.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部