期刊文献+

具有不确定次品率的EPQ模型及其求解算法 被引量:2

Economic Production Quantity model with uncertain defective rate and its algorithm
下载PDF
导出
摘要 假设在具有衰变特性的生产过程中次品率为随机变量或模糊变量的情形下,分别建立了经济生产批量模型;给出了次品率为随机变量情形下最优经济生产批量的解析表达式;设计了模糊模拟算法以及基于模糊模拟的粒子群优化算法对次品率为模糊变量情形下的经济生产批量模型进行求解。最后给出了两种情形下的数值实例来说明模型的求解过程以及所设计算法的有效性。 In deteriorating production processes,with the assumption that the defective rate of the produced items is a random variable or a fuzzy variable,Economic Production Quantity (EPQ) models are constructed,respectively.In the case of that the defective rate is a random variable,the analytic expression of the solution is presented.For the case that the defective rate is a fuzzy variable,the fuzzy simulation algorithm and Particle Swarm Optimization (PSO) algorithm based on the fuzzy simulation are designed to solve the model.Finally,numerical examples are presented in these two cases to illustrate the solving procedures and the validity of the designed algorithms.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第35期105-107,共3页 Computer Engineering and Applications
基金 国家自然科学基金( the National Natural Science Foundation of China under Grant No.70471049) 。
关键词 经济生产批量 模糊变量 模糊模拟 粒子群优化算法 Economic Production Quantity (EPQ) fuzzy variable fuzzy simulation Particle Swarm Optimization(PSO)
  • 相关文献

参考文献11

  • 1Porteus E.Optimal lot sizing,process quality improvement and setup cost reduction[J].Operations Research, 1986,34( 1 ) : 137-144.
  • 2Chan W,Ibrahim R,Lochert P.A new EPQ model:Integrating lower pricing,rework and reject situations[J].Production Planning and Control, 2003,14(7) : 588-595.
  • 3Chiu Y.The effect of service level constraint on EPQ model with random defective rate[J].Mathematical Problems in Engineering, 2006: 1-13.
  • 4Jamal A,Sarker B,Mondal S.Optimal manufacturing batch size with rework process at a single-stage production system[J].Computers & Industrial Engineering,2004,47:77-89.
  • 5Papachristos S,Konstantaras I.Economic production quantity model for items with imperfect quality[J].International Journal of Production Economics,2006,100: 148-154.
  • 6Wang Xiao-bin,Tang Wan-sheng,Xue Feng.Fuzzy random EOQ models with imperfect quality items[C]//The 5th International Conference on Machine Learning and Cyberneties,2006:1861-1866.
  • 7Zadeh L.Fuzzy sets[J].Information and Control, 1965,8:338-353.
  • 8Liu Bao-ding,Liu Yan-kui,Expected value of fuzzy variable and fuzzy expected value models[J].IEEE Transactions on Fuzzy Systems, 2002,10 (4) : 445-450.
  • 9Liu Bao-ding.A survey of credibility theory[J].Fuzzy Optimization and Decision Making,2006,5(4):387-408.
  • 10Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE International Conference on Neural Networks,Perth,Australia,1995,4: 1942-1948.

同被引文献20

  • 1陈晖,罗兵,杨秀苔.一种指数时变需求且生产率不相同的EPQ模型[J].重庆大学学报(自然科学版),2006,29(6):127-130. 被引量:2
  • 2Porteus E L. Optimal lot sizing, process quality improvement and setup cost reduction[ J]. Operations Research, 1986, 34 ( 1 ) : 137-144.
  • 3Jamal A M M, Sarker B R, Mondal S. Optimal manufactur- ing batch size with rework process at a single-stage produc- tion system[ J]. Computers & Industrial Engineering, 2004, 47(1) :77-89.
  • 4Salameh M K, Jaber M Y. Economic production quantity model for items with imperfect quality [ J ]. International Journal of Production Economics, 2000, 64(1-3) :59-64.
  • 5Papachristos S, Konstantaras I. Economic ordering quantity models for items with imperfect quality [ J ]. International Journal of Production Economics, 2006, 100( 1 ) :148-154.
  • 6Chan W, Ibrahim R, Lochert P. A new EPQ model: In- tegrating lower pricing, rework and reject situations [ J ]. Pro- duction Planning and Control, 2003, 14 (7) : 588-595.
  • 7Meca A, Timmer J, Garcia-Jurado I, et al. Inventory games [ J]. European Journal Of Operational Research, 2004, 156 ( 1 ) : 127-139.
  • 8Meca A, Garca-Jurado I, Borm P. Cooperation and compe- tition in inventory games [ J ]. Mathematical Methods of Op- erations Research, 2003, 57 ( 3 ) :481-493.
  • 9Meca A, Guardiola L A, Toledo A. p-additive games: a class of totally balanced games arising from inventory situa- tions with temporary discounts [ J ]. Top,2007,15 (2) : 322- 340.
  • 10Van den Heuvel W, Borm P, Hamers H. Economic lot-siz- ing games [ J ]. European Journal of Operational Research, 2007,176(2) :1117-1130.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部