期刊文献+

在衰减信道中基于最小贝叶斯风险的检测算法 被引量:1

Detection arithmetic with fading channel based on the minimum Bayes risk
下载PDF
导出
摘要 针对实际检测过程中本地检测器至融合中心传输信道的非理想性,提出了基于两种非理想信道模型的分布式检测算法:第一种为融合中心已知非理想信道的瞬时状态信息;第二种为融合中心已知非理想信道的统计特性。通过最小化平均贝叶斯风险来设计本地检测器和融合中心的优化判决算法,其判决形式都可简化为似然比判决。最后通过仿真表明第二种模型的检测性能略低于第一种模型,但其计算量却大大降低。 Aiming at the non-ideal fading channel from the local detectors to the fusion center in the factual detection, the distributed detection arithmetic is put forward based on two kinds of non-ideal channel model: firstly the instant channel state information has been known by the fusion center; secondly the channel fading statistics has been known by the fusion center. The optimal decision arithmetic are obtained by minimizing the average Bayes risk, the decision form of the local detectors and fusion center can be simplified as the likelihood ratio test. Finally, the stimulation shows that the detection performance of the second model is slightly worse than the first model, but the calculation is simplified greatly.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2007年第11期1827-1829,共3页 Systems Engineering and Electronics
关键词 衰减信道 贝叶斯准则 分布式算法 似然比判决 the fading channel Bayes rule distributed algorithm the likelihood ratio detection
  • 相关文献

参考文献4

  • 1Tenney R,Sandell N R Jr.Detection with distributed sensors[J].IEEE Trans.on AES,1981,17(2):501-510.
  • 2Thomopoulos S C A,Viswanathan R.Optimal distributed decision fusion[J].IEEE Trans.on AES,1989,25(9):761-765.
  • 3相明,韩崇昭,赵俊渭,李钢虎.基于串行系统配置结构的分布式NEYMAN-PEARSON检测融合算法[J].探测与控制学报,2002,24(3):5-10. 被引量:5
  • 4Liu B.Decentralized detection in wireless sensor networks with channel fading statistics[J].ICASSP,2006,4:857-860.

二级参考文献8

  • 1Tenney R R, Sandell N.R., Jr. Detection with Distributed Sensors[J]. IEEE Trans. on Aerospace and Elect. Syst, 1981, AES-17:501-510.
  • 2Chair Z, Varshney P K. Optimal Data Fusion in Multiple Sensor Detection Systems[J]. IEEE Trans. on Aerospace and Elect. Syst 1986, AES-22(1):98-101.
  • 3Reibman A R, Nolte L W. Design and performance comparison of distributed detection networks[J]. IEEE Trans. on Aerospace and Elect. Syst, 1987, AES-23:789-797.
  • 4Hoballah I Y, Varshney P K. Distributed Bayesian Signal Detection[J]. IEEE Trans. on Info. Theory, 1989,IT-35:995-1000.
  • 5Helstrom C W. Gradient Algorithm for Quantization Levels in Distributed Detection Systems[J]. IEEE Trans. on Aerospace and Elect. Syst, 1995,AES-31:390-399.
  • 6Blum R S. Necessary Conditions for Optimum Distributed Sensor Detectors under the Neyman-Pearson Criterion[J]. IEEE Trans. on inform. Theory. 1996,42(3):990-994.
  • 7Tang Z B, Pattipati K R, Kleinman D L. Optimization of detection networks: part I - tandem structures[J]. IEEE Trans on Syst Man Cybern, 1991, SMC-21:1044-1059.
  • 8Nielsen R O. Sonar Signal Processing[M]. Boston:Artech House, 1991.

共引文献4

同被引文献10

  • 1段正华,王梓展,鲁薇.一种改进的解相关LMS自适应算法[J].湖南大学学报(自然科学版),2006,33(3):114-118. 被引量:14
  • 2Motorola Inc. SPI Block Guide V04.061[R]. S12SPIV4/D, 2003: 14-15.
  • 3OUDJIDA A K, BERRANDJIA M L, LIACHA A, et al. Design and Test of General-Purpose SPI Master/Slave IPs on OPB Bus[J].IEEE International Multi-Conference on Systems Signals and Devices, 2010: 1-6.
  • 4BHUTADA R, MANOLI Y. Complex clock gating with integrated clock gating logic cell[J]. DTIS. International Conference on Design & Technology of Integrated Systems in Nanoscale Era, 2007:164-169.
  • 5HARADA K, KIMURA H. A novel low-power-consumption all-digital system-on-glass display with serial interface[J]. Journal of the Society for Information Display, 2010, 18(1): 30-36.
  • 6SUN F M, WANG H Y, FU F, et al. Survey of FPGA low power design[J]. 2010 International Conference on Intelligent Control and Information Processing (ICICIP), 2010, 8(9): 547-550.
  • 7SHEN B CH, ZHENG J H, SHEN M. Joint maximum likelihood and bayesian channel estimation[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2008, 20(5): 545-547.
  • 8梁德坚,刘玉琼.SPI总线数据远距离传输实现[J].电子测试,2009,20(1):72-75. 被引量:8
  • 9邱密,阳爱民,刘永定,何震凯.使用贝叶斯学习算法分类网络流量[J].计算机工程与应用,2010,46(25):78-81. 被引量:6
  • 10王玮,蔡莲红.贝叶斯网络拓扑结构确定方法的研究[J].小型微型计算机系统,2002,23(4):435-437. 被引量:11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部