期刊文献+

基于QPSO的证券市场GARCH模型实证研究

EMPIRICAL STUDY ON STOCK THROUGH GARCH BASED ON QPSO ALGROITHM
原文传递
导出
摘要 文章针对GARCH模型参数传统估计方法的不足,提出了利用量子粒子群算法的改进算法,并利用此算法实证建立了美国证券市场道琼斯指数收益的GARCH模型,更加精确地动态度量了证券市场收益序列的条件"异方差",并且和基本粒子群算法及其两种改进算法的实验结果进行了比较,最后对指数进行了走势预测. In this paper, quantum-behaved particle swarm optimization algorithm is developed for some serious disadvantages of traditional estimating methods of GARCH, and the GARCH model for Dow-Jones Average stock return are established empirically, and the results is compared with particle swarm optimization and two improved algorithms, finally forecast of the return is given.
出处 《数值计算与计算机应用》 CSCD 2007年第4期260-266,共7页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(60474030)
关键词 QPSO算法 GARCH模型 异方差 惯性权重法 压缩因子法 QPSO algorithm, GARCH model, heteroskedasticity, inertia weight, con-str^ction factor algorithm
  • 相关文献

参考文献10

  • 1Mandelbrot B. The variation of certain speculative prices[J]. Journal of Business, 1963, 36: 394- 419.
  • 2Engel R F. Autoregressive conditional hetero skedasticity with estimates of the variance of U.K. Inflation Econometrics, 1982, 50: 987-1008.
  • 3Bollerslev T. Generalized autoregressive conditional heteroskedasticity Econometrics 1986, 31: 307-327.
  • 4Berndt E K, Hall B H, Hall R E, Hausman J A. Estimation and inference in nonlinear structural models[J]. Annals of Economic and Social Measurement, 1974: 653-665.
  • 5Hansen L, Singleton K. Generalized instrumental variables estimation of nonlinear rational expectations models[J]. Econometrica, 1982, 50: 1269-1286.
  • 6Kennedy J, Eberhart R. Particle Swarm Optimization[C]. Proc.IEEE int. Conf. On Neural Network, 1995: 1942-1948.
  • 7Shi Y, Eberhart R C. A modified particle swarm optimizer[R]. IEEE Iternational Conference of Evolutionary Computation, Ancharage, Alaska, May 1998.
  • 8Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[A]. Proceedings of the Congress on Evolutionary Computation[C]. Piscataway, N J: IEEE Service Center, 1999: 1951-1957.
  • 9Sun J. et al, Particle Swarm Optimization with Particles Having Quantum Behavior[C]. Proc. 2004 Congress on Evolutionary Computation, 325-331.
  • 10Sun J. et al, A Global Search Strategy of Quantum-behaved Particle Swarm Optimization[C], Proc. 2004 IEEE Conference on Cybernetics and Intelligent Systems.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部