期刊文献+

超收敛中的双P猜想续篇——离散格林函数的权模估计 被引量:2

A Supplement to Superconvergence of Bi-p Conjecture——Weighted Norm Estimates for the Discrete Green Function
原文传递
导出
摘要 探讨超收敛猜想中p=4的情形.为此目的我们推导了离散格林函数的权模估计. This note is a supplement to our two early papers in the reference discussing about the superconvergence conjecture for p = 4. For this aim, we derive the weighted norm estimates for the discrete Green function.
作者 周俊明 林群
出处 《数学的实践与认识》 CSCD 北大核心 2007年第23期87-94,共8页 Mathematics in Practice and Theory
关键词 超收敛 离散Green函数 权模估计 superconvergence discrete Green function weighted norm estimates
  • 相关文献

参考文献13

  • 1周俊明,林群.超收敛的双p阶猜想[J].数学的实践与认识,2007,37(9):109-110. 被引量:1
  • 2Lin Q, Zhou J. Supereonvergenee in high-order Galerkin finite element methods [J]. Computer Methods in Applied Mechanics and Engineering, 2007,196 (37) : 3779-3784.
  • 3Brandts J, Krizek M. History and future of supereonvergence[C]. JAKUTO International Series, Math Sei Appl, 2001,15 : 22-33.
  • 4朱起定 林群.有限元超收敛理论[M].湖南科学技术出版社,1989..
  • 5Lin Q, Lin J. Supereonverge on anistropie meshes[J]. International Journal of Information and Systems Sciences, 2007,3(2) :261-266.
  • 6Wahlbin L B. Superconvergence in Galerkin Finite Element Methods[M]. Springer,1995.
  • 7Schatz A H, Wahlbin L B. Interior maximum norm estimates for finite element methods part Ⅱ[J]. Math Comp, 1995,64:907-928.
  • 8Schatz A H, Sloan I, Wahlbin L B. Supereonvergence in the finite element method and meshes which are locally symmetric with respect to a point [J]. SIAM J Numer Anal, 1996,33 : 505-521.
  • 9Schatz A H. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids : part Ⅰ global estimates[J]. Math Comp, 1998,67 : 877-899.
  • 10Blum H, Lin Q, Rannacher R. Asymptotic error expansions and Richardson extrapolation for linear finite elements[J]. Numer Math,1986,49:11-37.

二级参考文献1

共引文献10

同被引文献29

  • 1Blum H, Lin Q, Rannacher R. Asymptotic error expansions and richardson extrapolation for linear finite elements[J]. Numer Math, 1986, 49: 11-37.
  • 2Chen C M, Lin Q. Extrapolation of finite element approximation in a rectangular domain[J]. J Comp Math, 1989, 3:227-233.
  • 3Sehatz A H. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids : part Ⅰ. global estimates[J]. Math Comp, 1998,67 : 877-899.
  • 4Scott R. Optimal L∞ estimates for the finite element method on irregular meshes[J]. Math Comp, 1976,30:681- 697.
  • 5Lin Q, Xie R F. Some advances in the study of error expansion for finite element. Ⅰ. Eigenvalue error expansion[J]. J Comput Math, 1986, 4:368-382.
  • 6Nitsche J. L∞-convergence of finite element approximations[J]. Mathmatical Aspects of Finite Element Methods, Rome, 1975.
  • 7Frehse J, Rannacher R. Asymptotic L∞ error estimates for linear finite element approximations of quasilinear boundary value prolems[J]. Siam J Numer Anal, 1978, 15: 418-431.
  • 8Ju P Krasovskii. Properties of Green's function and generalized solutions of elliptic boundary value problems[J]. Soviet Mathematics, 1969. 54-120.
  • 9Krizek M, Neittaanmaki P. On superconvergence techniques[J]. Acta Appl Math, 1987, 9: 175-198.
  • 10Wahlbin L B. Superconvergence in Galerkin Finite Element Methods[M]. Springer,1995.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部