期刊文献+

非线性三阶边值问题反对称变号解的无穷可解性 被引量:3

Multiple Anti-symmetric Sign-changing Solutions for a Nonlinear Third-order Boundary Value Problem
原文传递
导出
摘要 利用Krasnosel′skii不动点定理及延拓正(负)解的方法,证明了一类非线性三阶三点边值问题,当其非线性项满足某些假设条件时,具有无穷多个反对称变号解. In this paper, the existence of multiple anti-symmetric sign-changing solutions for a nonlinear third-order three-point boundary value problem is investigated by using Krasnosel'skii fixed point theorem and the method of extending positive or negative solution.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第23期149-153,共5页 Mathematics in Practice and Theory
基金 山西省自然科学基金项目(20051005)
关键词 反对称变号解 不动点定理 延拓法 anti-symmetric sign-changing solutions, fixed point theorem the method ofextending
  • 相关文献

参考文献4

  • 1Anderson D R. Green's function for a third-order generalized right focal problem[J]. J Math Anal Appl, 2003, 288(1) :1-14.
  • 2Douglas R Anderson. John M Davis. Multiple solutions and eigenvalues for third-order right focal boundary value problems[J]. J Math Anal Appl, 2002,267 (1): 135-157.
  • 3Anderson D, Avery R I. Multiple positive solutions to a third-order discrete focal boundary value problem[J]. Comput Math Appl, 2001,42(3-5): 333-340.
  • 4Gupta C P, Lakshmikantham V. Existence and uniqueness theorems for a third-order three-point boundary value problem[J]. Nonlinear Anal, 1991,16(11): 949-957.

同被引文献11

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部