摘要
给出了一类二阶变系数常微分方程y″+[pu(x)-v(x)]y′+[qu2(x)+r(u(x)v(x)-u(′x))]y=f(x)及y″+[pu(x)-v(x)]y′+[qu2(x)+r(u(x)v(x)-u(′x))]y=f(x)[y-′ru(x)y]n可积的充分条件及其通解表达式,并举例说明它的应用.
The sufficient condition of a kind of second order differential equation with variable coefficienty"+[pu(x)-v(x)]y'+[qu^2(x)+r(u(x)v(x)-u'(x))]y=f(x)and y"+[pu(x)-v(x)]y'+[qu^2(x)+r(u(x)v(x)-u'(x))]y=f(x)[y'-ru(x)y]^n, andtheir general solution are given, and its explication is given by examples.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第23期157-160,共4页
Mathematics in Practice and Theory
基金
河南省高校青年骨干教师资助计划项目(豫教高2003100)
商丘师范学院重点学科资助项目(院教200412)
关键词
二阶变系数常微分方程
充分条件
特征方程
通解
the second order differential equation with variable coefficient
sufficientcondition
characteristic equation ~ general solution