期刊文献+

构建在最大熵原理上的分布估计算法及其应用研究 被引量:4

Constructing Estimation of Distribution Algorithms Based on the Maximum Entropy
下载PDF
导出
摘要 分布估计算法是进化计算领域的一个新方向.它主要用概率模型来建造进化计算中的遗传算法,它不再依赖于交叉与变异,而是估计较好个体的概率分布,用概率分布来引导对搜寻空间的探索.本文提出一类基于最大熵的分布估计算法.实验结果表明,在解决某些较复杂问题时,本文算法比遗传算法更具优势. Estimation of Distribution Algorithm (EDA) is a new area of Evolutionary Computation. Unlike traditional Genetic Algorithms, EDAs replace the crossover and mutation operators by constructing a probabilistic model of promising individuals, and exploit search space guided by the probability distribution. This paper develops a framework for estimation of distribution algorithms based on maximum entropy. Empirical results show that an algorithm of this type gives better performance than genetic algorithm in some complex problems.
出处 《小型微型计算机系统》 CSCD 北大核心 2007年第12期2229-2232,共4页 Journal of Chinese Computer Systems
基金 重庆市自然科学基金计划项目基金项目(CSTC2006BB2397)资助 重庆市教委科学技术研究基金项目(KJ060611)资助
关键词 最大熵 模式 概率分布 约束 maximum entropy schema~ probability distribution constrain
  • 相关文献

参考文献10

  • 1Pedro Larranaga. A review on estimation of distribution algorithms[M]. Kluwer Academic Publishers, 2002.
  • 2Chris Manning, Hinrich Schtitze. Foundations of statistical natural language processing[M]. MIT Press,1999.
  • 3John Holland. Adaptation in natural and artificial systems[J]. University of Michigan Press, Ann Arbor, Michigan, 1975.
  • 4Stephens C R, Waelbroeck H. Schemata evolution and building blocks[J]. Evolutionary Computation, 1999, 7(2):109-124.
  • 5Ricardo Poli. Exact schema theory for genetic programming and variable-length genetic algorithms with one point crossover[J]. Genetic Programming and Evolvable Machines, 2001, 2 (2): 123-163.
  • 6William B Langdon, Riccardo Poli. Foundations of genetic programming [M]. Springer-Verlag, 2002.
  • 7Stephens C R, Waelbroeck H, Aguirre R. Schemata as building blocks: does size matter[C]. In: Foundations of Genetic Algorithms 5, Morgan Kaufmann, 1997, 117-133.
  • 8Ameil Feinstein. Foundations of information theory[M]. The Maple Press Company, York, PA, USA, 1959.
  • 9Silviu Guiasu, Abe Shenitzer. The principle of maximum entropy[J]. The Mathematical Intelligencer, 1985, 7:42-48.
  • 10Heinz Muhlenbein. The equation for the response to selection and its use for prediction[J]. Evolutionary Computation, 1997, 5(3) :303-346.

同被引文献59

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部