期刊文献+

基于神经网络的混凝土预制桩单桩竖向极限承载力参数分析 被引量:2

Parametric Analysis of Vertical Ultimate Bearing Capacity of Precast Concrete Pile Using Artificial Neural Network
下载PDF
导出
摘要 应用BP神经网络,对混凝土预制桩单桩竖向极限承载力进行预测,并分析了各种参数对单桩竖向极限承载力的影响。通过影响因素分析,确定了桩径、桩长、入土深度、桩侧摩阻力加权平均值、桩端阻力平均值等参数对单桩竖向极限承载力有影响。对混凝土预制桩单桩静载试验资料进行分析和取样,将包含上述参数的样本与单桩竖向极限承载力形成数据对,采用三层神经网络进行训练,输入层为各参数,输出层为单桩竖向极限承载力,建立了混凝土预制桩单桩竖向极限承载力预测模型。研究表明,所建立的模型能够有效地预测混凝土预制桩单桩竖向极限承载力,通过参数分析,能够得出各参数对单桩竖向极限承载力的影响规律,从而确定比较合理的单桩设计参数。 An approach of predicting vertical ultimate bearing capacity of precast concrete pile is presented using backpropagation (BP) artificial neural network (ANN) . Some parameters are analyzed to see how to influence vertical ultimate beating capacity of precast concrete pile. Through analyzing it is found that five parameters may influence vertical ultimate bearing capacity of precast concrete pile, including pile diameter, pile length, length accessing earth, weighted average frictional resistance at the side of pile and average frictional resistance at the end of pile.The ANN can be trained using a small set of parameters obtained from test data which may influence vertical ultimate bearing capacity of precast concrete pile,Three layers are adopted in ANN, which the input layer includes parameters mentioned above and the output layer is vertical ultimate beating capacity of precast concrete pile. The results show that the accuracy of vertical ultimate beating capacity of precast concrete pile predicted by the presented approach is validated by comparison with test data.The relationship between vertical ultimate beating capacity of precast concrete pile and parameters can be found through parametric analysis, and the reasonable parameters can be determined.
作者 陈铁冰
出处 《公路交通科技》 CAS CSCD 北大核心 2007年第11期87-91,共5页 Journal of Highway and Transportation Research and Development
基金 广东省自然科学基金资助项目(06028131) 校重点科技资助项目(06KJd007)
关键词 桥梁工程 单桩竖向极限承载力 神经网络 预制混凝土桩 参数分析 bridge engineering vertical ultimate bearing capacity of pile neural network precast concrete pile parametric analysis
  • 相关文献

参考文献10

  • 1HAGAN M T,DEMUTH H B,BEALE M H.Neural network design[M].Boston:PWS,1996.
  • 2CHAN W T,CHOW Y K,LIU L F.Neural network:an alternative to pile driving formulas[J].Computers and Geotechnics,1995,17(2):135-156.
  • 3LEE I M,LEE J H.Prediction of pile bearing capacity using artificial neural networks[J].Computers and Geotechnics,1996,18 (3):189-200.
  • 4THE C I,WANG K S,GOH A T C,et al.Prediction of pile capacity using neural networks[J].Journal of Computing in Civil Engineering,1997,11 (2):129-138.
  • 5冯紫良,孙海涛,王树娟.用人工神经网络预测单桩竖向极限承载力[J].同济大学学报(自然科学版),1999,27(4):397-401. 被引量:33
  • 6刘勇健.基于遗传-神经网络的单桩竖向极限承载力预测方法研究[J].岩土力学,2004,25(1):59-63. 被引量:23
  • 7张留俊,黄晓明,冯炜,王晓谋.人工神经网络在路堤沉降预测中的应用[J].公路交通科技,2006,23(5):7-10. 被引量:19
  • 8RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323:533-536.
  • 9HAGAN M T,MENHAJ M B.Training feedforward networks with the Marquardt algorithm[J].IEEE transactions on neural networks,1994,5 (6):989-993.
  • 10《桩基工程手册》编委会.桩基工程手册[M].北京:中国建筑工业出版社,1995..

二级参考文献15

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1992..
  • 2焦李成.神经网络计算[M].西安:电子科技大学出版社,1996..
  • 3玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,1998..
  • 4焦李成,神经网络系统理论,1996年
  • 5黄强,桩基工程若干技术热点问题,1996年
  • 6胡守仁,神经网络应用技术,1993年
  • 7Asaoka. Analysis and Prediction of Consolidation Settlement of Normally Consolidated Clay Foundation under Embankment Loading [J] .Soil and foundation, 1988, 28 (3): 35-50.
  • 8杨位光.地基及基础[M].北京:中国建筑工业出版社,2000..
  • 9孙海涛,吴限.深基坑工程变形预报神经网络法的初步研究[J].岩土力学,1998,19(4):63-68. 被引量:44
  • 10宰金珉,梅国雄.成长曲线在地基沉降预测中的应用[J].南京建筑工程学院学报,2000(2):8-13. 被引量:117

共引文献99

同被引文献11

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部