期刊文献+

基于特征选择的高光谱图像快速矢量量化算法 被引量:2

Fast VQ algorithm for hyperspectral image compression based on feature selection
下载PDF
导出
摘要 高光谱图像在取得较高光谱分辨率的同时带来了海量数据,使其压缩成为必需.矢量量化技术在高光谱图像压缩中取得了良好效果,但有计算复杂度高的缺点.针对高光谱图像谱带间高度冗余的情况,本文提出基于特征选择的快速矢量量化算法.该算法在减少运算量同时,能取得和LBG算法相近的压缩效果.实验表明在信噪比略微下降的情况下,计算时间下降了94.32%. Hyper Spectral Image (HSI) can get fine spectral resolution as well as brings enormous data volume, so compression is necessary. Vector Quantization (VQ) can get good effect in HSI compression, but it has the shortcoming of computing expensively. By using of the fact that HSI has high redundancy in its bands, this paper proposed a feature selection based fast VQ algorithm. It has the advantage of being simple, produ- cing a large computation time saving and yielding compression fidelity as good as the LBG algorithm. The experiment results showed that the runtime reduced 94.32% while the SNR slightly reduced by using our method.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2007年第11期1748-1750,共3页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60472048)
关键词 高光谱图像 图像压缩 矢量量化 特征选择 hypersepctral image image compression vector quantization feature selection
  • 相关文献

参考文献7

  • 1张晔,张钧萍.遥感超谱(Hyperspectral)图象处理技术[J].中国图象图形学报(A辑),2001,6(1):6-13. 被引量:11
  • 2ROGER R E, CAVENOR M C. Lossless compression of AVIRIS images [ J ]. IEEE Trans on Image Processing, 1996, 5(5): 713-719.
  • 3RYAN M J, ARNOLD J F. Lossy compression of hyperspectral data using vector quantization[ J]. Remote Sens Environ, 1997,61:419 -436.
  • 4RYAN M J, ARNOLD J F. The lossless compression of AVIRIS images by vector quantization[J ]. IEEE Tram on Geoscience and Remote Sensing, 1997, 35(3) : 546-550.
  • 5LINDE Y, BUZO A, GRAY R. An algorithm for vector quantizer design [ J ]. IEEE Transactions on Communications, v COM-28, 1980, 1:84-95.
  • 6MOTI'A G, RIZZO F, STORER J A. Compression of hyperspectral imagery [ C ]//Proceedings of the Data Compression Conference ( DCC' 03 ), Snowbird, UT, USA:[s.n. ] , 2003, 3:25 -27.
  • 7QIAN S E. Hyperspectral data compression using a fast vector quantization algorithm [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8) :1791 -179.

二级参考文献17

  • 1Jimenez L O, Landgrebe D A. Supervised classification in high- dimensional spece: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. On System, Man, and Cybernetics-Part C: Applications and Reviews 1998 28(1):39-54.
  • 2Tu Te Ming, Chert Chin Hsing. A fast two stage elassification method for bigh dimensional remote sensing data. IEEE Trans.on Geoscienee and Remote Sensing, 1S98,36(1) :182-191.
  • 3Jia Xiuplng, Richards J A. Segmented principal componemts transformation for efficient hyperspeetral remote sensing image display and classification. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(1) : 538-942.
  • 4Zhang Ye, DesaiMD, Zhang Junping et al. Adaptive subspace decomposition for hyperspectral data dimensionality reduction, In:International Conference on Image Processing (ICIP99'), Kobe, Japan,1999:326-329.
  • 5Benediktsson J A, Sveinsson J S, Arnason K. Classification and feature extraction of AVIRIS data. IEEE Trans. On Geoseience and Remote Sensing, 1995,33(5):1194-1205
  • 6Harsanyi J C, Chang Chein I. Hyperspectral image ctassification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. On Geoscience and Remote Sensing, 1994,32(4) : 779-785.
  • 7Chang Chein-I, Zhao Xiao Li, Althouse M L G et al Least squares subspaee projection approach to mixed pixel classification for hyperspectral images. IEEE Trans. On Geoscience and Remote Sensing, 1998,36(3):898-912.
  • 8JimenezL O, Motell A M, Creus S. Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, Majority Voting, and Neural Networks. IEEE Trans. On Geoscienee and Remote Sensing, 1999,37(3) : 1360-1366.
  • 9Benediktsson J A, Kanellopulos I. Classification of multisource and hyperspectral data based on decision fusion. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(3):1367-1377.
  • 10Hoffman R N, Johnson D W. Application of EOF's to multispectral imagery : Data compression and noise detection for AVIRIS. IEEE Trans. On Geoscience and Remote Sewing, 1994.32(1) :25-34.

共引文献10

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部