摘要
定义并研究了拟Frobenius余环,证明了下面几个等价条件:C是拟Frobenius余环;AC有限生成投射模,并且l:A→*C是Frobenius扩张;CA有限生成投射模,并且l:A→C*是Frobenius扩张;忘却函子Ur:Mc→MA是拟Frobenius函子;(Gl,Ul)与(Gr,Ur)都是拟左Frobenius函子偶;忘却函子U:cM→M是拟Frobenius函子.
In this paper, the notion of quasi - Frobenius corings is introduced. We prove that following conditions for a coring C are equivalent: C is a quasi - Frobenius coring; A C is finitely generated and projective, and the ring extension l:A→^*C is a Frobenius; CA is finitely generated and projective, and the ring extension l:A →^* C is quasi - Frobenius ; the forgetful functor Ur : M^c→ MA is quasi - Frobenius ; ( Gl, Ul ) and ( Gr,Ur) are left quasi - Frobenius functors pairs ;the forgetful functor Ul :^cM →AM is quasi - Frobenius.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2007年第6期10-12,共3页
Journal of Anhui University(Natural Science Edition)