期刊文献+

关于拟Frobenius余环

On quasi-Frobenius corings
下载PDF
导出
摘要 定义并研究了拟Frobenius余环,证明了下面几个等价条件:C是拟Frobenius余环;AC有限生成投射模,并且l:A→*C是Frobenius扩张;CA有限生成投射模,并且l:A→C*是Frobenius扩张;忘却函子Ur:Mc→MA是拟Frobenius函子;(Gl,Ul)与(Gr,Ur)都是拟左Frobenius函子偶;忘却函子U:cM→M是拟Frobenius函子. In this paper, the notion of quasi - Frobenius corings is introduced. We prove that following conditions for a coring C are equivalent: C is a quasi - Frobenius coring; A C is finitely generated and projective, and the ring extension l:A→^*C is a Frobenius; CA is finitely generated and projective, and the ring extension l:A →^* C is quasi - Frobenius ; the forgetful functor Ur : M^c→ MA is quasi - Frobenius ; ( Gl, Ul ) and ( Gr,Ur) are left quasi - Frobenius functors pairs ;the forgetful functor Ul :^cM →AM is quasi - Frobenius.
作者 郭广泉
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2007年第6期10-12,共3页 Journal of Anhui University(Natural Science Edition)
关键词 拟Frobenius余环 左拟Frobenius余环 左拟Frobenius函子偶 拟Frobenius函子 quasi - Frobenius coring left quasi - Frobenius coring left quasi - Frobenius functor pairs quasi - Frobenius functor
  • 相关文献

参考文献6

  • 1Sweedler M E. The predual theorem to the Jacobson -Bourbaki theorem [ J ]. Trans Amer Math Soc, 1975,213 (4) : 391 - 406.
  • 2Guo G. Quasi - Frobenius corings and quasi - Frobenius extensions [ J ]. Commun Algebra, 2006, 34 ( 6 ): 2269 - 2280.
  • 3Castano Iglesias F, Nastasescu C. Quasi Frobenins functors with application to corings[ EB/OL]. (2006 - 12 - 19) [ 2007 - 03 - 15 ]. http ://arxiv. org/year/math/0612662.
  • 4Brzezinski T. Towers of corings[ J]. Comm Algebra,2003,31 (4) :2015 - 2026.
  • 5Bohm G. Integral theory for Hopf algebra [ J ]. Alg Rep Theory,2005,8 ( 1 ) : 563 - 599.
  • 6Morita K. The endomorphism ring theorem for frobenius extensions [ J ]. Math Zeitschr, 1967,102 ( 2 ) : 385 - 404.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部