期刊文献+

LiAl_(0.03)Mn_(1.97)O_4的流变相辅助微波合成及电化学性能 被引量:1

Synthesis and electrochemical properties of LiAl_(0.03)Mn_(1.97)O_4 by a rheological-phase-assisted microwave synthesis method
下载PDF
导出
摘要 采用流变相辅助微波合成法,制备了结晶度好、纯度高的尖晶石相的锂离子电池正极材料LiAl0.03Mn1.97O4。对其进行了XRD分析和SEM研究,并与传统固相法制备的LiMn2O4和LiAl0.03Mn1.97O4进行了比较。结果表明,该合成法制备的LiAl0.03Mn1.97O4具有优良的电化学性能,用这种材料制造的电池具有比较高的首次放电容量(115 mAh/g)以及良好的可逆性和循环性能,25次循环后比容量几乎不变,保持在115 mAh/g左右。 The LiAl0.03Mn1.97O4used in lithium-ion batteries was synthesized by a rheological-phase-assisted microwave synthesis method. The samples were compared with LiMn2O4 and LiAl0.03Mn1.97O4 obtained from the traditional solid-state reaction method and were investigated by XRD and SEM. The sample was used as cathode material for lithium-ion battery, whose charge/discharge properties and cycle performance were examined. The results reveal that the powder prepared by this method exhibits a higher initial discharge capacity of 115 mAh/g, much better reversibility and good cycling stability, after 25 cycles without discharge capacity fading, retaining 115 mAh/g.
出处 《电子元件与材料》 CAS CSCD 北大核心 2007年第12期10-13,共4页 Electronic Components And Materials
关键词 电子技术 LiAl0.03Mn1.97O4 锂离子电池正极材料 流变相辅助微波合成法 electron technology LiAl0.03Mn1.97O4 lithium-ion battery cathode material rheological-phase-assisted microwave synthesis method
  • 相关文献

参考文献25

  • 1Zhang S S, Xu K, Jow T R. Understanding formation of solid electrolyte interface film on LiMn2O4 electrode [J]. J Electrochem Soc, 2002, 149(12): 1521-1526.
  • 2Im D, Manthiram A. Nanostructured lithium manganese oxide cathodes obtained by a reduction of aqueous lithium permanganate with hydrogen [J]. J Electrochem Soc, 2003, 150(6): 742--746.
  • 3Sun Y C, Wang Z X, Chen L Q, et al. Improved electrochemical performances of surface-modified spinel LiMn2O4 for long cycle life lithium-ion batteries [J]. J Electrochem Soc, 2003, 150(10): 1294-1298.
  • 4Xia Y, Yoshio M. An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds [J]. J Electrochem Soc, 1996, 143: 825-833.
  • 5Amatucci G G, Schmutz C N, Blyr A, et al. Materials' effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries [J]. J Power Sources, 1997, 69(1-2): 11-25.
  • 6Cummow R J, Kock A, Thackeray M M. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells [J]. Solid State lonics, 1994, 69:59-67.
  • 7Komaba S, Oikawa K, Myung S T, et al. Neutron powder diffraction studies of LiMn2-yAlyO4 synthesized by the emulsion drying method [J]. Solid State lonics, 2002, 149(1-2): 47-52.
  • 8Julien C, Ziolkiewicz S, Lemal M, et al. Synthesis, structure and electrochemistry of LiMn2-yAlyO4 prepared by a wet-chemistry method [J]. J Mater Chem, 2001, 11: 1837-1842.
  • 9Banov B, Todorov Y, Trifonova A, et al. LiMn2-xCoxO4 cathode with enhanced cycleability [J]. J Power Sources, 1997, 68(2): 578-581.
  • 10Amine K, Tukamoto H, Yasuda H, et al. Preparation and electrochemical investigation of LiMn2-xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries [J]. J Power Sources, 1997, 68(2): 604-608.

同被引文献13

  • 1李琪,李飞,乔庆东.Li_(1+x)Mn_2O_4的合成及表征[J].石油化工高等学校学报,2004,17(4):22-25. 被引量:8
  • 2Fernanda F C, Bazito, Roberto M T. Cathodes for lithium ion batteries: the benefits of using nanostructured materials [J]. J Braz Chem Soc, 2006, 17(4): 627-642.
  • 3Sun Y C, Wang Z X, Huang X J, et al. Synthesis and eleclrochemical performance of spinel LiMn2-x-yNixCryO4 as 5V cathode materials for lithium ion batteries [J]. J Power Sources, 2004, 132:161 - 165.
  • 4Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5V class cathode material of Li-ion secondary battery[J]. Electrochim Acta, 2004, 49: 219-227.
  • 5Wu C,Wang Z X, Wu F, et al. Spectroscopic studies on cation-doped spinel LiMn2O4 for lithium ion batteries [J]. Solid State Ionics, 2001, 144: 277-285.
  • 6Kim J S, Vaughey J T, Johnson C S, et al. Significance of the tetrahedral a site on the electrochemical performance of substituted Li1.05M0.05Mn1.90O4 spinel electrodes (M = Li, Mg, Zn, Al) in lithium cells [J]. J Electrochem Soc, 2003, 150( 11 ): 1498 - 1502.
  • 7Ito Y, Idemoto Y, Ui K, et al. Electronic states of LiyMn2-xMxO4(M = Mn, Mg, Ni, Co) as a cathode active material for Li secondary battery by first-principles calculation using DV-X alpha method [J]. Electrochemistry, 2003, 71(12): 1145 - 1147.
  • 8Ito Y, Idemoto Y, Tsunoda Y, et al. Relation between crystal structures, electronic structures, and electrode performances of LiMn2-xMxO4(M = Ni, Zn) as a cathode active material for 4V class Li secondary battery [J]. J Power Source, 2003, 119-121: 733-737.
  • 9Fang C M, De Wijs G A, De With G, et al. Lattice and local-mode vibrations in anhydrous and protonized LiMn2O4 spinels from first-principles theory [J]. J Mater Chem, 2007, 17: 4908-4913.
  • 10Kitao H, Fujihara T, Takeda K, et al. High-temperature storage performance of Li-ion batteries using a mixture of Li-Mn spinel and Li-Ni-Co-Mn oxide as a positive electrode material [J]. Electrochem Solid State Lett, 2005, 8(2): 87-90.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部