期刊文献+

基于遗传算法和神经网络的油气弹簧非参数化建模

Nonparametric Modeling of Hydro-pneumatic Spring Based on Genetic Algorithm and Artifical Neural Network
下载PDF
导出
摘要 将遗传算法应用于油气弹簧神经网络模型的优化,首先利用遗传算法的全局搜索能力得到神经网络权值的次优解,然后利用BP算法精确搜索到权值的最优解,从而克服了传统BP算法易陷入局部最小点的缺点。与采用传统BP算法的神经网络比对结果表明,遗传算法能显著地提高神经网络的精度,建立的油气弹簧人工神经网络模型可以对油气弹簧的输出特性进行可靠地预测。 Genetic algorithm(GA) was used to optimize the artifical neural network(ANN) model of hydro--pneumatic spring herein. With GA, the suboptimal weight matrices of the ANN model were firstly obtained, then the optimal weight matrices were farther achieved with back propagation algorithm(BPA). Thus, the shortcoming of plunging into local optimum of BPA was overcome. The results of the ANN model with GA and without GA show that GA can improve the precision of ANN obviously and the ANN model of hydro--pneumatic spring can preestimate the output characteristics of hydro--pneumatic spring reliably.
作者 李威 仝军令
机构地区 中国矿业大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2007年第23期2894-2897,共4页 China Mechanical Engineering
关键词 油气弹簧 非参数化 人工神经网络 遗传算法 hydro-- pneumatic spring nonparametric artifical neural network genetic algorithm
  • 相关文献

参考文献5

二级参考文献32

  • 1陈耀钧.轿车液压减振器阻力特性模拟计算及分析[J].汽车技术,1995(10):7-13. 被引量:23
  • 2刘荣胜.减振器工作过程的数值模拟及其应用[M].北京:清华大学,1997..
  • 3.[EB/OL].Http://www. gisdevelopment. net/aars/acrs/1998/psl/ps1012, shtml,.
  • 4.[EB/OL].Http://www. gisdevelopment. net/aars/acrs/1998/psl/psl012a.shtml,.
  • 5HANJ KAMBERM 范明 盂小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2003..
  • 6SIDDIQUE MNH, TOKHI MO. Training Neural Network: Backpropagation vs Genetic Algorithms[ A] . Proc of INNS-IEEE Joint Conf.on Neural Networks[ C], 2001.
  • 7ROVITHAKIS GA, MANIADAKIS M, ZERVAKIS M. A Hybrid Neural Network/Genetic Algorithm Approach to Optimizing Feature Extraction for Signal Classification[ J]. IEEE TRANSACTIONS ONSYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNET-ICS, 2004, 34(1).
  • 8LEUNG FHF, LAM HK, LING SH, et al. Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm[ J] . IEEE Transactions on Neural networks, 2003, 14(1).
  • 9MANTAWY AH, ABDEL-MAGID YL, SELIM SZ. Integrating genetic algorithms, Tabu search, and simulated annealing for the unit commitment problem[ J] . IEEE Transactions on Power Systems,1999, 14(3).
  • 10PHAM DT, KARABOGA D. Intelligent Optimization Techniques,Genetic Alogorithms, Tabu Search, Simulated Annealing and Neural Networks[ M] . New York: Spring-Verlag, 2000.

共引文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部