摘要
In the framework of topological vector spaces, we give a characterization of strong Minkowski separation, introduced by Cheng, et al., in terms of convex body separation. From this, several results on strong Minkowski separation are deduced. Using the results, we prove a drop theorem involving weakly countably compact sets in locally convex spaces. Moreover, we introduce the notion of the co-drop property and show that every weakly countably compact set has the co-drop property. If the underlying locally convex space is quasi-complete, then a bounded weakly closed set has the co-drop property if and only if it is weakly countably compact.
In the framework of topological vector spaces, we give a characterization of strong Minkowski separation, introduced by Cheng, et al., in terms of convex body separation. From this, several results on strong Minkowski separation are deduced. Using the results, we prove a drop theorem involving weakly countably compact sets in locally convex spaces. Moreover, we introduce the notion of the co-drop property and show that every weakly countably compact set has the co-drop property. If the underlying locally convex space is quasi-complete, then a bounded weakly closed set has the co-drop property if and only if it is weakly countably compact.
基金
National Natural Science Foundation of China(10571035)