期刊文献+

基于改进BPSO算法求解一类作业车间调度问题 被引量:8

Solving a Class of Job-Shop Scheduling Problem based on Improved BPSO Algorithm
原文传递
导出
摘要 针对某一大型机械厂结构车间的作业调度问题(JSP),考虑技术工人操作熟练度影响因素,以及离散型并行生产的特点,建立新的符合实际生产情况的数学模型,提出利用离散二进制粒子群(BPSO)算法来解决如何安排m位工人加工n个结构件,以达到加工时间最短的一类JSP调度问题,并依据求解的特殊性对该算法进行了改进.制定新的初始粒子产生策略,保证在可行解空间内开始进行寻优;引入"记忆库"、修改Sig函数和加入判断条件,确保粒子每次更新后都满足模型中的等式约束.通过实例验证,证实该算法是有效的,并能够得到较好的结果.同时,该数学模型在离散制造业中也具有广泛的应用价值. Analyzing the special job shop scheduling problem of a large-scale machine shop, considering workers' operational qualification and characteristics of discretely concurrent production, a novel mathematical model has been proposed to meet actual production. In addition, an improved Binary Particle Swarm Optimizer (BPSO) algorithm has been developed for solving the problem how to arrange m workers to process n structures, in order to optimize the minimum completion time of the jobs. In this improved BPS0, a new method of making initial particles has been presented for searching optimum particle in the feasible dimensional problem space. Besides, importing memory base, modifying Sig function and considering constraint condition have used in algorithm for making updated particles to meet the constraint equation of mathematical model. Algorithm examples research demonstrates that the improved BPS0 algorithm is effective and can achieve good results. Moreover, the mathematical model has wide application in discrete mamffacture.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2007年第11期111-117,共7页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70501002 70671007) 航空科学基金(2007ZG51075)
关键词 车间作业调度 离散二进制粒子群优化(BPSO) 结构件 job shop scheduling Binary Particle Swarm Optimizer (BPS0) structure
  • 相关文献

参考文献8

  • 1王书锋,邹益仁.车间作业调度(JSSP)技术问题简明综述[J].系统工程理论与实践,2003,23(1):49-55. 被引量:46
  • 2Huang K L, Liao C J. Ant colony optimization combined with taboo search for the job shop scheduling problem [ J]. Computer & Operations Research, 2006, doi: 10. 1016/j. cor. 2006.07.003.
  • 3Lian Z G, Jiao B, Gu X S. A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan[J]. Applied Mathematics and Computation, 2006,183(2):1008- 1017.
  • 4彭传勇,高亮,邵新宇,周驰.求解作业车间调度问题的广义粒子群优化算法[J].计算机集成制造系统,2006,12(6):911-917. 被引量:30
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory [ C ]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, 10: 39- 43.
  • 6Shi Y, Eberhart R C. Empirical study of particle swarm optimization[ C]//Proceeding of Congress on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1999, 1945-1949.
  • 7Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm[ C ]//Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics. Piscataway, NJ: IEEE Service Center, 1997, 4104-4109.
  • 8李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398

二级参考文献36

  • 1高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:95
  • 2张超勇,饶运清,李培根,刘向军.求解作业车间调度问题的一种改进遗传算法[J].计算机集成制造系统,2004,10(8):966-970. 被引量:53
  • 3李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 4王海英 王凤儒 柳崎峰.用定界遗传算法解有交货期的非标准Job-shop调度问题[A]..Proceedings of the 3th World Congress on Intelligent Control and Automation[C].China,2000.532-636.
  • 5玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 6Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 7Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 8Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 9Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 10Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.

共引文献467

同被引文献89

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部