期刊文献+

基于Wolff法则连续体拓扑优化方法中的参数分析 被引量:1

Parameter Analysis in Wolff's Law Based Approach of Continuum Structural Topology Optimization
下载PDF
导出
摘要 Wolff法则是指骨骼在外部荷载变化时,骨骼内部小梁骨保持沿主应力方向分布以更好抵抗外部荷载。基于Wolff法则的连续体拓扑优化方法是模仿骨骼重建规律的一种新的连续体优化方法。基本思想是将待优化的结构看成是遵从Wolff法则的“骨骼”,仿照骨骼重建过程,连续体的拓扑优化过程即为“骨骼”重建过程。该方法中利用用于描述材料微结构几何及弹性性质的构造张量作为设计变量,采用参考应变区间确定构造张量特征主值的更新规律。本文通过对仿生过程中各因素的分析,解释了优化模型中各参数的物理意义。通过数值分析,给出了参数选取规律以保证算法稳定和快速收敛,从而使得本文优化方法更具实际应用价值。 Wolff's law indicates that bone is endowed with the ability to adapt its internal structure to the load environment and trabecular bone distributes along the trajectories of the principal stresses, which motivates to propose for continuum structural topology optimization. The structure is cosidered as a piece of bone obeying Wolff's law and the process of finding the optimum structural topology is simulated as the bone remodeling/growth, where a second rank positive and definite fabric tensor as the design variable of a material point is introduced to express the geometry and elasticity of the material point in design domain. An interval of reference strain corresponding to the dead zone in biomechanics, is presented to determine the update rule of the eigenvalues of fabric tensors. And, the physical significations of the parameters, i.e. the initial design variables, increments of the design variable and the interval of reference strain, as well their effects on the convergence behaviour of the optimization algorithm are discussed. Some useful conclusions for setting the parameters are presented to improve the convergence behaviour.
机构地区 大连理工大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2007年第2期242-248,共7页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金 创新群体基金(10225212 10421202 10402005) 长江学者和创新团队发展计划 国家基础性发展规划项目基金(2005CB321704)
关键词 拓扑优化 Wolff法则 骨骼重建 有限元分析 topology optimization, Wolff’s law, bone remodelling, finite element analysis
  • 相关文献

参考文献2

二级参考文献15

  • 1Cowin SC.Wolff's law of trabecular architecture at remodelling equilibrium.Journal of Biomechanical Engineering,1986,108(1):83~88
  • 2Odgaard A,Kabel J,van Rietbergen B,et al.Fabric and elastic principal directions of cancellous bone are closely related.Journal of Biomechanics,1997,30(5):487~495
  • 3Zysset PK,Curnier A.An alternative model for anisotropic elasticity based on fabric tensors.Mechanics of Materials,1995,21(4):243~250
  • 4He QC,Curnier A.A more fundamental approach to damaged elastic stress-strain relations.International Journal of Solids and Structures,1995,32(10):1433~1457
  • 5Bendsφe MP,Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering,1988,71(3):197~224
  • 6Bendsφe MP.Optimal shape design as a material distribution problem.Structural Optimization,1989,1:193~202
  • 7Mei YL,Wang XM.A level set method for structural topology optimization and its applications.Advances in Engineering Software,2004,35(7):415~441
  • 8Rodriguez-Velazquez J,Seireg A.Optimizing the shapes of structures via a rule based computer program.Computers in Mechanical Engineering,1985,4(1):2~28
  • 9Baumgartner A,Harzheim L,Mattheck C.SKO (soft kill option):the biological way to find an optimum structure topology.International Journal of Fatigue,1992,14(6):387~393
  • 10Xie YM,Steven GP.A simple evolutionary procedure for structural optimization.Computers and Structures,1993,49(5):885~896

共引文献84

同被引文献11

  • 1蔡坤,张洪武,陈飙松.基于Wolff法则的连续体结构拓扑优化方法[J].力学学报,2006,38(4):514-521. 被引量:9
  • 2Bendsφe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(3): 197-224.
  • 3Rozvany G I N, Zhou M, Birker T, Generalized shape optimization without homogenization [J]. Structural Optimization, 1992, 4, 250-252.
  • 4Mei Y L, Wang X M, A level set method for strucrural topology optimization and its applications [J]. Advances in Engineering Software, 2004, 35 (7): 415-441.
  • 5Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization [J]. Computers and Structures, 1993, 49(5): 885-896.
  • 6Wolff J. The Law of Bone Remodelling [M]. Berlin: Verlag, 1986.
  • 7Cowin S C. Wolff's law of trabecular architecture at remodelling equilibrium [J]. Journal of Biomechanical Engineering, 1986, 108(1): 83-88.
  • 8Bagge M. A model of bone adaptation as an optimization process[J]. Journal of Biomechanics, 2000, 33 (11) :1349-1357.
  • 9Cowin S C. The relationship between the elasticity tensor and the fabric tensor [J]. Mechanics of Material, 1985, 4(2):137-147.
  • 10Zysset P K, Curnier A. An alternative model for anisotropic elasticity based on fabric tensors [J]. Me chanics of Material, 1995, 21(4): 243-250.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部