期刊文献+

基于Galois联络的最小非冗余关联规则挖掘 被引量:1

Mining Minimal Non-Redundant Association Rules Based on Galois Connection
下载PDF
导出
摘要 关联规则挖掘是NP难题,关键是如何约简频繁项集。本文以Galois联络为理论基础,应用Galois联络的闭包运算及其性质定义数据库中的频繁项和封闭频繁项,提出了挖掘关联规则生成子、精确关联规则生成基和近似关联规则本征基的概念,并由此构造最小非冗余精确关联规则和近似关联规则挖掘的MNRM算法。该算法与Apriori算法相比较,挖掘的关联规则是最小非冗余的,降低了计算复杂度,而且规则具有不丢失任何信息、最小前件和最大后件以及对用户最实用和最相关等优点。 Since the association rule's mining is NP-hard,the key is how to reduce frequent itemsets.In the paper,the generating basis for exact association rules and the proper basis for approximate association rules are addressed based on the Galois connection,and the Galois closure properties.This paper presents a new algorithm called MNRM to discover minimal non-redundant exact and approximate rules.Compared with the Apriori algorithm,these rules are the most non-redundant,the computing complexity is reduced.And these rules have many strongpoints,such as minimal antecedents and maximal consequents,the most relevant association rules,limiting the number of rules produced without information loss,the most user-useful and user-relevant.
出处 《计算机工程与科学》 CSCD 2007年第2期93-96,103,共5页 Computer Engineering & Science
关键词 Galois联络 关联规则 数据挖掘 MNRM算法 Galois connection association rules data mining MNRM algorithm
  • 相关文献

参考文献13

  • 1Agrawal R,Imielinski T,Swami A.Mining Association Rules Between Sets of Items in Large Databases[A].Proc of the ACM SIGMOD Int'l Conf on Management of Data[C].1993.207-216.
  • 2Mannila H.Theoretical Frameworks for Data Mining[J].ACM SIGKDD Explorations Newsletter,2000,1 (2):30-32.
  • 3Park J S,Chen M S,Yu P S.An Effective Hash Based Algorithm for Mining Association Rules[J].ACM SIGMOD Record,1995,24(2):175-186.
  • 4Savasere A,Omiecinski E,Navathe S.An Efficient Algorithm for Mining Association Rules in Large Databases[A].Proc of the 21st Int'l Conf on Very Large Data Bases[C].1995.432-444.
  • 5Han J,Fu Y,Discovery of Multiple-Large Association Rules from Large Databases[A].Proc of the 21st Int'l Conf on Vary Large Data Bases[C].1995.420-431.
  • 6Zaki M J.Mining Non-Redundant Association Rules[J].Data Mining and Knowledge Discovery,2004,9 (3):223-248.
  • 7Zaki M J,Hsiao C J.Efficient Algorithm for Mining Closed ltemsets and Their Lattice Structure[J].IEEE Trans on Knowledge and Data Engineering,2005,17 (4):462-478.
  • 8Lin D,Kedem Z M.Pincer-Search:A New Algorithm for Discovering the Maximum Frequent Set[A].Proc of the 6th Int'l Conf on Extending Database Technology[C].1998.105-119.
  • 9Carpineto C,Romano G.Concept Data Analysis:Theory and Applications[M].John Wiley and Sons,2004.
  • 10Jaoua A.Galois Connection,Formal Concepts and Calois Lattice in Real Relations:Application in a Real Classifier[J].Journal of System and Software,2002,60(2):149-163.

同被引文献5

  • 1韦素云,吉根林,曲维光.关联规则的冗余删除与聚类[J].小型微型计算机系统,2006,27(1):110-113. 被引量:15
  • 2Oosthuizen,G.D.,&Venter, F.J.(1995). Using a Lattice for Visual Analysis of Categorical Data. In Perceptural Issues in Visualization (pp. 142-155). Berlin: Springer.
  • 3开封市财政收支月报2006-2007[Z].2006-2007.
  • 4HANJW KAMBEM 范明 孟晓峰 译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.237-251.
  • 5张清.我国地区财政绩效分析与评价[J].经济纵横,2001(2):11-14. 被引量:11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部