期刊文献+

动态环境中的进化算法 被引量:18

Evolutionary algorithms in dynamic environments
下载PDF
导出
摘要 目前关于进化算法(EA)的研究主要局限于静态优化问题,然而很多现实世界中的问题是动态的,对于这类时变的优化问题通常并不是要求EA发现极值点,而是需要EA能够尽可能紧密地跟踪极值点在搜索空间内的运行轨迹.为此,综述了使EA适用于动态优化问题的各种方法,如增加种群多样性、保持种群多样性、引入某种记忆策略和采用多种群策略等. Evolutionary algorithms(EAs) are widely and often used for solving stationary optimization problems where the fitness landscape or objective function does not change during the course of computation.However,the environments of real world optimization problems may fluctuate or change sharply.If the optimization problem is dynamic,the goal is no longer to find the extrema,but to track their progression through the search space as closely as possible.All kinds of approaches that have been proposed to make EAs suitable for the dynamic environments are surveyed,such as increasing diversity,maintaining diversity,memory-based approaches,multi-population approaches and so on.
出处 《控制与决策》 EI CSCD 北大核心 2007年第2期127-131,137,共6页 Control and Decision
基金 国家自然科学基金重点项目(70431003)
关键词 动态环境 非静态 进化算法 遗传算法 Dynamic environment Non-stationary Evolutionary algorithm Genetic algorithm
  • 相关文献

参考文献42

  • 1Fogel L J,Owens A J,Walsh M J.Artificial intelligence through simulated evolution[M].New York:John Wiley,1966.
  • 2Goldberg D E,Smith R E.Nonstationary function optimization using genetic algorithms with dominance and diploidy[C].Proc of the 2nd Int Conf on Genetic Algorithms.Lawrence Erlbaum Associates,1987:59-68.
  • 3曹宏庆,康立山,陈毓屏.动态系统的演化建模[J].计算机研究与发展,1999,36(8):923-931. 被引量:19
  • 4Cartwright H M,Tuson A L.Genetic algorithms and flowshop scheduling:Towards the development of a real-time process control system[C].Proc of the AISB Workshop on Evolutionary Computing.San Francisco:Morgan Kaufmann Publishers,1994:277-290.
  • 5Reeves C,Karatza H.Dynamic sequencing of a multi-processor system:A genetic algorithm approach[C].Proc of lst Int Conf on Artificial Neural Nets and Genetic Algorithms.San Francisco:Morgan Kaufmann Publishers,1993:491-495.
  • 6Bierwirth C,Kopfer H,Mattfeld D C,et al.Genetic algorithm based scheduling in a dynamic manufacturing environment[C].Proc of IEEE Conf on Evolutionary Computation.Piscataway:IEEE Service Center,1995:439-443.
  • 7Bierwirth C,Mattfeld D C.Production scheduling and rescheduling with genetic Algorithms[J].Evolutionary Computation,1999,7(1):1-18.
  • 8Lin S C,Goodman E D,Punch W F.A genetic algorithm approach to dynamic job shop scheduling problems[C].Proc of the 7th Int Conf on Genetic Algorithm.San Francisco:Morgan Kaufmann Publishers,1997:481-488.
  • 9Pico C A G,Wainwright R L.Dynamic scheduling of computer tasks using genetic algorithms[C].Proc of the 1st IEEE Conf on Evolutionary Computation.Piscataway:IEEE Service Center,1994:829-833.
  • 10Krishnakumar K.Micro-genetic algorithms for stationary and non-stationary function optimization[C].Intelligent Control and Adaptive Systems Proc of the SPIE.Philadelphia,1989:289-296.

二级参考文献4

  • 1曹鸿兴,灰色系统理论浅述,1988年
  • 2邓聚龙,灰色控制系统,1985年
  • 3贺建勋,系统建模与数学模型,1995年
  • 4姜启源,数学模型(第2版),1993年

共引文献18

同被引文献211

引证文献18

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部