摘要
设(X,T)是拓扑动力系统,其中X是紧致度量空间,T:X→X是连续映射.设超空间(K,d)是由X的所有非空紧子集组成的度量空间,其中d是Hausdorff度量.我们将证明对任意紧致、完全不连通集Z,都存在(K,d)中一个与Z同胚的元K,且K是传递点.
Let (X, T) be a topological dynamical system, where X is a compact metric space and T:X→X is a continuous map. We consider the hyperspace (K, d ) of all non-empty compact subsets of X endowed with the Hausdorff metric d, we will show that for any compact totally disconnected subset Z, there exists some K in K such that Z is homeomorphic to K and K is a transitive point.
出处
《苏州大学学报(自然科学版)》
CAS
2007年第1期22-24,共3页
Journal of Soochow University(Natural Science Edition)
基金
国家自然科学基金资助项目(10071069)
关键词
弱混合
超空间
紧致完全不连通集
拓扑传递
传递点
weak mixing
hyperspace
compact totally disconnected subset
topologically transitive
transitive point