摘要
引入了图的反符号边控制的概念,设G=(V,E)是一个图,一个函数f:e→{-1,+1}如果对任意e∈E(G),均有∑e′∈N[e]f(e′)≤0,则称f为图G的一个反符号边控制函数.图G的反符号边控制数定义为-γs(G)=max{∑e∈Ef(e)|f为图G的反符号边控制函数}.在本文中,我们主要给出了图的反符号边控制数的两个上界,并确定了几类特殊图的反符号控制函数.
In this paper we introduce the concept of minus edge domination in graphs. Let G = (V, E)be a graph, a function f:E→{-1,+1} is said to be a reverse signed dominating function (RSEDF) of G if ∑e′∈Nf(e′)≤0 holds for everyedge e∈E, the reverse signed domination number of G is defined asγs(G)=max{∑e∈Ef(e)|f| is a RSEDF of G }. In this paper we obtain two upper bounds of rs(G) for general graphs G,and determine the exact values of rs(G) for some special classes of graphs G.
出处
《华东交通大学学报》
2007年第5期144-147,共4页
Journal of East China Jiaotong University
基金
国家自然科学基金资助项目(10661007)
关键词
反符号边控制函数
反符号边控制数
符号边控制函数
符号边控制数.
reverse signed edge dominating function
reverse signed edge domination number
signed edge dominating function
signed edge domination number.