期刊文献+

基于双正则化的图像超分辨率盲重建 被引量:3

Blind Image Super-resolution Reconstruction Based on Double Regularization
下载PDF
导出
摘要 图像超分辨率重建是利用数字信号处理技术由一系列低分辨率观测图像得到高分辨率图像。大多数重建算法假设成像系统的模糊特性也即点扩散函数(PSF)已知,然而实际的应用环境下PSF事先不知道或部分知道。为此,将未知PSF模型化,提出基于双正则化的图像超分辨率盲重建算法,并且正则化作用的强度随重建图像局部光滑程度的变化而自适应地改变,以便能保护图像细节同时抑制平滑区域的噪声。求解过程中采用交替最小化方法估计PSF参数和高分辨率图像,并随着迭代次数的增加逐步提高每次寻优的精度以节省计算开销。实验结果表明,该算法能够比较准确地估计出PSF参数并取得较好的图像重建效果。 Image super-resolution reconstruction (SRR) refers to a signal processing approach which produces high-resolution images from observed multiple low-resolutlon images. Many image SRR algorithms assume that the blurring process, i. e. , point spread function(PSF) of the imaging system is known prior to reconstruction. However, the blurring process is not known or is known only to within a set of parameters in many practical applications. In this paper, we propose an approach for blind image SRR based on double regularization by parametrizing PSF. A space-adaptlve regularization method for image SRR is used to preserve detail at the textured regions and suppress noise in the smooth background. In the scheme, PSF parameter(s) and the high-resolution image are estimated by alternating minimization method. The demand for precision of minimizations is varied during the optimization procedure in order to reduce the computation cost. Experimental results from a synthetic image sequence show that blur parameters are approximated actually and the reconstructed image is visually pleasing.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第12期2057-2062,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60672094)
关键词 图像超分辨率重建 盲解卷 分辨率增强 点扩散函数估计 image super-resolution reconstruction, blind deconvolution, resolution enhancement, point spread function (PSF) estimation
  • 相关文献

参考文献10

  • 1Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technique overview [ J ]. IEEE Signal Processing Magazine, 2003, 20(3 ): 21 - 26.
  • 2Tsai R Y, Huang T S. Multiple frame image restoration and registration [ A ]. In: Advances in Computer Vision and Image Processing[M], Greenwich, CT, England: JAI Press, 1984:317 - 339.
  • 3Nguyen N, Milanfar P, Golub G H. Efficient generalized crossvalidation with applications to parametric image restoration and resolution enhancement[ J]. IEEE Transactions on Image Processing, 2001, 10(9) : 1299 - 1308.
  • 4He H, Kondi L P. A regularization framework for joint blur estimation and super-resolution of video sequences[ A ]. In: IEEE International Conference on Image Processing [ C ], Genoa, Italy, 2005, 3 ( 9 ) :329 - 332.
  • 5Kundur D, Hatzinakos D. Blind image deconvolution [ J ]. IEEE Signal Processing Magazine, 1996, 13 (5) : 43 -64.
  • 6张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报(A辑),2004,9(10):1145-1152. 被引量:53
  • 7Hardie R C, Barnard K J, Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images[ J]. IEEE Transactions on Image Processing, 1997, 6(12) : 1621 - 1633.
  • 8Katsaggelos A K, Biemond J, Schafer R W, et al. A regularized iterative image restoration algorithm [ J ]. IEEE Transactions on Signal Processing, 1991, 39(4) : 914-929.
  • 9Chan T F, Wong C K. Convergence of the ahernating minimization algorithm for blind deconvolution [ J]. Linear Algebra Application, 2000, 316(9) : 259 -285.
  • 10Chardon S, Vozel B, Chehdi K. A comparative study between parametefic blur estimation methods [ A ]. In: Proceedings of International Conference Acoustic, Speech, Signal Processing [ C ], Phoenix, USA, 1999:3233-3236.

二级参考文献64

  • 1Jordi Sole, Anisse Taleb, Christian Jutten. Parametric Approach to Blind Deconvolution of Nonlinear Channels[A]. In:ESANN'2000-European Symposium on Artificial Neural Networks[C], Bruges, Belgium, 2000 : 26 - 28.
  • 2Haritopoulos Michel, Yin Hujun, Allinson M. Image denoising using self-organizing map-based nonlinear independent component analysis[J]. Neural Networks,2002,15(8-9):1085-1098.
  • 3Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I: Theory and realization [J].Signal Processing, 2003,83 (5) : 941 - 955.
  • 4Lun Daniel P K, Hsung T C, Shen T W. Orthogonal discrete periodic Radon transform. Part I : applications [J]. Signal Processing, 2003,83(5) : 957-971.
  • 5Krell Gerald, Herzog Andreas, Michaelis Bernd. An artificial nervous network for real-time image restoration[A]. In:IEEE Instrumentation and Measurement Technology Conference[C],Brussels, Belgium, 1996.
  • 6Lagendijk R L, Tekalp A M, Biemond J. Maximum likelihood image and blur identification: A unifying approaeh[J]. Optical Engineering, 1990,29(5) :422-435.
  • 7Reeves S, Mersereau R. Blur identification by the method of generalized cross-validation [J]. IEEE Transactions on Image Processing, 1992,1(3) : 301 - 311.
  • 8Choand C M, Don H S. Blur identification and image restoration using a multilayer neural network[A]. In: IEEE International Joint Conference on Neural Networks [C], Singaproe, 1991,3:2558-2563.
  • 9Qidwai. Uand Chen C-H. Blind Image Restor-ation for Ultrasonic C-Scan Using Constrained 2D-HOS [A]. In: IEEE International Conference on Acoustics Speech and Signal Processing[C], Salt Lake, UT, USA, 2001,6:3405-3408.
  • 10Slock D T M, Papadias C B. Further results on blind identification and equalization of multiple FIR channels[A]. In:Proceedings of International Conference on Acoustics, Speech and Signal Processing[C], Detroit MI USA, 1995 : 1964-1967.

共引文献52

同被引文献30

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部