期刊文献+

最优LDPC码校验节点度分布多项式

Optimal Check Node Degree Distribution Polynomial of LDPC Code
下载PDF
导出
摘要 证明了当错误率满足一定条件时,校验节点度分布多项式只有两个非零项并且次数连续时是最优的。这个结果用于LDPC码的优化时,有助于减少搜索空间,降低了计算量。 When initial error probability is less than a certain value, the optimal check node degree distribution polynomial only has two non-zero coefficients with successive orders of power. The calculation complexity can be reduced when the result is used to optimize LDPC code.
出处 《电视技术》 北大核心 2007年第B08期16-17,20,共3页 Video Engineering
关键词 LDPC码 优化 紧密 度分布 LDPC code optimization concentrated degree distribution
  • 相关文献

参考文献5

  • 1GALLAGER R G. Low-Density Parity-Check Codes [M]. Cambridge, MA: MIT Press, 1963.
  • 2RICHARDSON T J, URBANKE R L. Design of capacity-approaching irregular low-density parity-check codes [J]. IEEE Trans on Inforunation Theory, 2001, 47(2):619-637.
  • 3HOU J. Performance analysis and code optimization of low density parlty-check codes on rayleigh fading channels [J]. IEEE Journal on Selected Areas in Communications, 2001, 19(5):924-925.
  • 4RICHARDSON T, Rtidiger L. Urbanke. The capacity of low-density parity-check codes under messsage-passing dccoding[J]. IEEE Transactions on Information Theory, 2001, 47:599-618.
  • 5LUBY M G. Improved low-density parity-check codes using irregular graphs[J]. IEEE Trans on Inform Theory, 2001, 47(2):285-298.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部