摘要
Many researches show that, in metal cutting process, tool wear rate depends on some cutting process parameters, such as temperature at tool face, contact pressure and relative sliding velocity at tool/chip and tool/workpiece interfaces. Finite element method(FEM) application enables the estimate of these parameters and the tool wear. A tool wear estimate program based on chip formation and heat transfer analysis is designed and compiled with Python to calculate the wear rate and volume, and update tool geometry according to the tool wear. The progressive flank and crater wears in milling operation are estimated by the program. The FEM code ABAQUS/Explicit and Standard are employed to analyze chip formation and heat transfer process.
Many researches show that, in metal cutting process, tool wear rate depends on some cutting process parameters, such as temperature at tool face, contact pressure and relative sliding velocity at tool/chip and tool/workpiece interfaces. Finite element method(FEM) application enables the estimate of these parameters and the tool wear. A tool wear estimate program based on chip formation and heat transfer analysis is designed and compiled with Python to calculate the wear rate and volume, and update tool geometry according to the tool wear. The progressive flank and crater wears in milling operation are estimated by the program. The FEM code ABAQUS/Explicit and Standard are employed to analyze chip formation and heat transfer process.
基金
Sponsored by National Natural Science Foundation of China(NSFC50505003)
Excellent Young Scholars Research Foundation of Beijing Institute of Technology(000Y03-14)
关键词
切割工具
器具磨损
切削
磨损率
cutting tool technology
tool wear
FEM
milling operation
wear rate