期刊文献+

扇形束CT局部成像的Lambda优质重建 被引量:2

Fan-Beam Lambda Imaging Without Singular Values
下载PDF
导出
摘要 在CT扫描过程中,由于电离辐射作用会导致病人产生癌症或者基因损伤,所以发展低剂量的成像算法正成为热点研究。作为局部成像算法之一的Lambda成像技术,具有减少剂量与快速成像的优点,但由于奇异值的必然存在,从而降低了成像质量。基于Wang Ge局部成像算法框架,提出利用高斯核函数及卷积性质来构建新的Lambda精确成像技术,并对高斯函数的参数选择进行分析。实验结果表明,应用新算法可确保得到高质量的重建图像,其特点是消除了图像中奇异点处微分不存在的现象,使得重建图像更加连续和光滑,尤其是在重建结果中加入了抑制灰度值平均的调节项,使得图像的分辨率和对比度大大提高,更加有利于临床的诊断。 Because the ionizing radiation may induce cancers and genetic damage in the patients during CT scanning,it is highly desirable to develop an imaging algorithm for X-ray scan.As one of the local imaging techniques,the Lambda imaging reduces the X-ray dose and imaging time.However,the existence of the singular values results in the low quality of the image.In this work,we proposed a new exact Lambda imaging algorithm based on Wang(Ge's) local imaging method to reconstruct an image utilizing a Gaussian kernel function convoluting the projection data.We also analyzed how to choose the parameters of the Gaussian kernel function.Numerical simulations proved that our new reconstruction algorithm was with high quality,eliminating the inexistence of the differential on the singularities and enhancing the resolution and contrast of the images.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2007年第6期844-849,共6页 Chinese Journal of Biomedical Engineering
基金 国家"973"重点基础研究发展规划资助项目(2003CB716101)。
关键词 扇形束CT 局部重建 Lambda成像 奇异值 fan-beam local reconstruction Lambda reconstruction singular value
  • 相关文献

参考文献23

  • 1Noo F, Defrise M, Clackdoyle R, et al. Image reconstruction from fan-beam projections on less than a short scan[J]. Phys Med Biol, 2002,47:2525 - 2546.
  • 2Clackdoyle R, Noo F, Guo J, et al. A quantitative reconstruction from truncated projections in classical tomography [ J ]. IEEE Trans Nucl Sci, 2004,51 : 2570 - 2578.
  • 3Katsevich A. An improved exact filtered backprojection algorithm for spiral computed tomography[J]. Adv Appl Math, 2004,32:681 - 697.
  • 4Rashid-Farrokhi F, Liu KJR, Berenstein CA, et al. Wavelet-based muhiresolution local tomography [ J ]. IEEE Trans Image Processing, 1997, 6: 1412- 1430.
  • 5Yu Hengyong, Wang Ge. A General formula for Fan-Beam Lambda Tomography [ J ]. International Journal of Biomedical Imaging, 2006, 2006:1-9.
  • 6Katsevich A. Improved cone beam local tomography [ J ]. Inverse Problems, 2006, 22: 627- 643.
  • 7Faridani A, Buglione K, Huabsomboon P, et al. Introduction to local tomography[ A ]. In: Radon Transforms and Tomography[ C ]. Providence, RI, USA: American Mathematical Society, 2001.29- 47.
  • 8Louis AK, Maass P. Contour reconstruction in 3-D X-ray CT[J]. IEEE Trans Medicine Imaging, 1993,12: 764- 769.
  • 9Katsevich A. Cone beam local tomography[J]. SIAM J Appl Math, 1999,59:2224 - 2246.
  • 10Anastasio MA, Shi Daxin, Pan Xiaochuan, et al. A preliminary investigation of local tomography for megavoltage CT imaging [ J ].Medical Physics, 2003,30: 2969- 2980.

同被引文献20

  • 1Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm [J]. J Opt Soc Am, 1984, AI: 612-9.
  • 2Faridani A, Buglione K, Huabsomboon P, et al. Introduction to local tomography [A], In: Radon Transforms and Tomography [C]. Providence, RI, USA: American Mathematical Society, 2001, 278: 29-47.
  • 3Faridani A. Local tomography II [J]. SIAM J Appl Math, 1997, 57: 1095-127.
  • 4Faridani A Ritman EL, Smith KT. Local tomography [J]. SIAM J. Appl Math, 1992, 52: 459-84.
  • 5Faridani A. Cone beam local tomography [J]. SIAM J Appl Math, 1999, 59: 2224-46.
  • 6Faridani A. Improved cone beam local tomography [J].Inv. Prob., 2006, 22: 627-43.
  • 7Ramm AG, Katsevich A. The randon tomography and local tomography [M]. Boca Raton, FL: CRC Press, 1996.
  • 8Anastasio MA, Shi DX, Pan XC, et al. A preliminary investigation of local tomography for megavoltage CT imaging [J]. Med Phys, 2003, 30(11): 2969-80.
  • 9Yu H, Wang G. A general formula for fan-beam lambda tomography [J]. Int J Biomed Imaging, 2006, 1-9.
  • 10Ye Y, Yu H, Wang G. Cone-beam pseudo-lambda tomography [J]. Inv Prob, 2007, 23: 203-15.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部