期刊文献+

帕金森病人苍白球神经元放电的自适应阈值检测

Adaptive Threshold Detecting Neural Spikes of the Globus Pallidus for Parkinson's Patients
下载PDF
导出
摘要 自动选取合适的阈值以适应不同信噪比的信号,达到检测神经元放电的目的。依据微电极记录的信号,采用闭环方式自动递归调整阈值,逐次检测神经元放电。对合成的模拟神经放电信号及临床手术中微电极记录的112个病人的神经元放电信号处理,检测出了不同信噪比信号中的神经元放电脉冲,这些放电脉冲反映了神经核团的电生理特征。根据检测的神经元放电,可以对不同神经核团放电特征进行客观定量的分析,准确识别手术中微电极所在的神经核团,对于指导靶点定位具有重要的意义。 To select exact threshold automatically for accurate spikes detection under various signal to noise ratio(SNR) conditions.Based on the neuron discharge signals recorded by microelectrodes,close loop adaptive threshold algorithm was used to regulate the threshold for automatic spike detection,and neural spikes were detected gradually.The results showed that spikes were detected effectively in both simulated data according to actual extracellular recordings and clinic data under various SNR levels.These neural spikes reflect nucleus physiological characteristic.Based on spike detection,the discharge characteristic of different neurons could be analyzed objectively and quantitatively,thus the nucleus could be identified exactly.The proposed method is of great importance for targets localization during surgery.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2007年第6期861-866,共6页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30371362 30671997)。
关键词 自适应阈值算法 微电极记录 神经元放电检测 adaptive threshold algorithm microelectrode recording neural spike detection
  • 相关文献

参考文献9

  • 1Lozano A, Hutchison W, Kiss Z, et al. Methods for microeletrode guided posteroventral pallidotomy [ J ]. J Neurosurgery, 1996, 84 : 194-202.
  • 2Magnin M, Morel A, Jeanmonod D. Singnal-unit analysis of the pallidum, thalamus and subthalamic nucleus in Parkinson patients [J]. Neuroscience,2000,96(3) :549-564.
  • 3Nakatani H, Watanabe T, Hoshimiya N. Detection of nerve action potentials under low signal-to-noise ratio condition[ J ]. IEEE Trans Biomed Eng,2001,48(8) :845-849.
  • 4Montgomery JEB, Gale JT, Haang H. Methods for isolating extracellular action potentials and removing stimulus artifacts from microelectrode recordings of neurons requiring minimal operator intervention[ J ]. J Neuroscience Methods, 2004,10 : 1-19.
  • 5Chandra R, Optican LM. Detection, classification, and superposition resolution of action potentials in muhiunit single channel recordings by an on-line real-time neural network I J]. IEEE Trans Biomed Eng, 1997, 44(5) : 403-412.
  • 6Kyung HK, Sung JK. Neural spike sorting under nearly 0-dB signalto-noise ratio using nonlinear energy operator and artificial [ J]. IEEE Trans Biomed Eng, 2000,47(10) : 1406-1411.
  • 7Andre D, Warakom C, Robert JB, et al. Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithym: wavelet analysis in microneurographiy [J]. IEEE Trans Biomed Eng, 2003,50( 1 ) :41-50.
  • 8Kyung HK, Sung JK. A wavelet-based method for action potential detection from extracellular neural signal recording with low signalto-noise ratio[J]. IEEE Trans Biomed Eng, 2003, 50(8): 999- 1011.
  • 9Zoran N, Joel WB. Spike detection using the continuous wavelet transform[J]. IEEE Trans Biomed Eng, 2005,52( 1 ) :74-87.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部