期刊文献+

一个与信籁域搜索技术相结合的微粒群算法 被引量:5

A Particle Swarm Optimization Algorithm Combined with Trust Region Searching
下载PDF
导出
摘要 微粒群优化算法(PSO)是一种有效的随机全局优化技术.文章针对利用微粒群优化算法进行多极值点的函数优化时,存在陷入局部极小点和搜索效率低的问题,把信籁域搜索技术引入到PSO算法中,提出了基于信籁域搜索的微粒群优化算法(TRPSO).该算法保持了PSO算法结构简单的特点,改善了PSO算法的全局寻优能力,提高了算法的收敛速度和计算精度.仿真计算结果表明,该算法的性能优于混沌微粒群优化算法(CPSO)和基本微粒群优化算法(PSO). Particle swarm optimization(PSO) algorithm is one of the most powerful methods for solving unconstrained and constrained global optimization problems.This paper,thinking of PSO algorithm is easy to trap into local minima in solving multimodal function,incorporates trust region searching into the PSO algorithm,and propose a new particle swarm optimization algorithm combined with trust region searching(TRPSO).The proposed algorithm has not only the simple for implement of algorithm PSO,also the fast convergence and high computational precision.The computational results on several benchmark problems have shown the proposed algorithm is superior to CPSO and PSO.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2007年第5期463-466,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 辽宁省自然科学基金资助(001084)
关键词 微粒群优化算法 信籁域 优化 Particle swarm optimization algorithm Trust region Optimization
  • 相关文献

参考文献7

  • 1Kennedy, Eberhart R. IEEE international Conference on Neural Networks[ C ]. Taibei: 1995:1 942-1 948.
  • 2Eberhart R, shi Y. Proceedings of the 2001 Congress on Evolutionary Computation [ C ]. London: 2001 : 81-86.
  • 3shi Y, Eberhart R. Proceedings of the 1999 congress on Evolutionary Computation[ C ]. New York: 1999:1 945-1 950.
  • 4shi Y, Eberhaxt R. IEEE international Conference on Evolutionary Computation[ C ]. Australia: 1998: 69-73.
  • 5Eberhart R, shi Y. Proceedings of 2000 Congress on Evolutionary Computation[ C]. London:2000: 84-88.
  • 6Yasuda K, lwasaki N. IEEE International Conference on systems[ C]. Australia: Man and Cybernetics, 2003 : 1 554-1 559.
  • 7shi Y, Eberhart R. Proceedings of the 2001 congress on Evolutionary Computation[ C]. Toronto: Univesity of Toronto Press,2001 : 101-106.

同被引文献35

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部