期刊文献+

线图中2-因子分支数一些结果的改进 被引量:2

The Improvement of Some Results of the Components of 2-Factors in Line Graph
下载PDF
导出
摘要 设G为一简单图,该文重点研究了图及其补图的线图中2-因子的分支数,改进了Nebesk■的一个结果,得出如下结论:阶数n≥5的简单图G,G和L(G)分别是G的补图和线图,存在一个图G′∈{G,■},线图L(G′)包含k个分支的2-因子,其中k=1,…,└(n-3)/4」.讨论了图及其补图的线图中2-因子分支的最大个数的界的问题,并给出了线图中存在一定分支数的2-因子的Chvtáal-Erds型条件,即对于阶为n的图G,如果k(G)≥a(G)-1,则L(G)中存在所有k个分支的2-因子,其中1≤k≤└n^(1/2)/3」. Let G be a simple graph(n≥5),G-be the complement of G and L(G) be the line graph of G;then there exists a graph G′∈{G,G^-} such that L(G′) contains a 2-factor with k cycles for all k,1≤k≤[(n-3)/4] which extends an known result of Nebesk.We also give a Chvátal-Erds condition for the existence of 2-factor with some special number of components: if k(G)≥a(G)-1 then L(G) contains a 2-factor with cycles for all k,1≤k≤[/n/3」.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2007年第5期480-484,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10671014)
关键词 哈密尔顿图 线图 补图 2-因子 Hamiltonian graph line graph complementary graph 2-factor
  • 相关文献

参考文献11

  • 1Bondy J A,Murty U S R. Graph theory with applications[ M]. New York: Elsevier, 1976.
  • 2Harrary F, Nash-Williams C st J A. On eulerian and hamiltonian graphs and line graphs[J] .Canadian Mathematical Bulletin, 1965,8:701- 710.
  • 3Gould R J, Hynds E A. A note on cycles in 2-factors of line graphs[ J ]. Bulletin of the Institute of Combinatorics and its Applications, 1999, 26:46-48.
  • 4Brualdi R, Shanny R. Hamiltonian line graphs[J] .Journal of Graph Theory, 1981,5:307-304.
  • 5Gould R J,Hynds E A.A note on 2-factors in line graphs[J] .Bulletin of the Institute of Combinatofics and its Applications,2006,47:58- 62.
  • 6刘瑞富,刘展鸿,王华平.哈密顿线图中2-因子的分支数[J].华东交通大学学报,2006,23(4):127-129. 被引量:1
  • 7Nebesky L. A theorem on Hamiltonian line graphs[ J ]. Comment Math Univ Carolinae, 1973,14:107-112.
  • 8Nunokawa S, Owa M, Srivastava H M. A certain class of multivalent Functions [ J ]. Appl Math Lett, 1997,10: 7-10.
  • 9Benhocine J C, Fouquet J L. The Chvatal-Erdos condition and pancyclic line graphs[J]. Discrete Math, 1987,66:21-26.
  • 10刘瑞富,刘展鸿,熊黎明.线图中2-因子分支数的一些结果[J].江西师范大学学报(自然科学版),2006,30(5):485-486. 被引量:1

二级参考文献11

  • 1[1]J.A Bondy and U.S.R Murty "Graph Theory with Applications" MacMillan,London and Elsevier Amsterdam,1976
  • 2[2]F.Harrary and C.st.J.A Nash-Williams,"On eulerian and Hamiltonian graphs and line graphs",Canadian Mathematical Bulletin PP.701-710 1965
  • 3[3]R.J Gould,E.A Hynds,"A Note on Cycles in 2-factors of line Graphs",Bulletin of the Institute of Combinatorics and its Applications.Vol 26 PP 46-48,1999
  • 4[4]R.J Gould,E.A Hynds "A Note on 2-factors in Line Graphs" Bulletin of the Institute of Combinatorics and its Applications.Accapted for published
  • 5[5]R.Brualdi,R.Shanny,"Hamiltonian Line Graphs" Journal of Graph Theory.Vol.5,PP 307-314,1981
  • 6[6]S.Brandt,G.Chen,R.J Faudree,R.J Gould,L.Lesniak "On the Number of Cycles in a 2-factor",Journal of Graph Theory,Vol.24,No.2,PP.165-173,1997 The components of 2-factors in Hamiltonian Line Graphs
  • 7Gould R J,Hynds E A.A Note on Cycles in 2-factors of line graphs[J].Bulletin of the Institute of Combinatorics and its Applications,1999,26:46-48.
  • 8Chvatal V,Erdos P.A note on Hamiltonian circuits[J].Discrete Math,1972 (2):111-113.
  • 9Veldman H J.On dominating and spanning circuit in graphs[J].Discrete Math,1994,124:229-239.
  • 10Bondy J A,Murty U S R.Graph theory with applications[M].MacMillan:London and Elsevier Amsterdam,1976.

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部