期刊文献+

一类具反馈控制和时滞阶段结构抛物系统的稳定性

The stability of a delayed stage-structured parabolic system with feedback controls
下载PDF
导出
摘要 研究一类具反馈控制和时滞阶段结构的抛物系统,对相应的线性化算子进行了谱分析,给出了正平衡点的局部稳定性;运用上下解方法及相应的单调迭代序列研究其动力学行为,得到正平衡点渐近稳定的充分条件. A delayed stage-structured parabolic system is discussed, the local asymptotical stabilities are given using spectral analysis of the corresponding linearized operator; the dynamics of the system is investigated using upper and lower solutions and the associated monotone iterations, and sufficient conditions are obtained for the asymptotic stability of the positive equilibrium of the model.
作者 谭飞
出处 《苏州大学学报(自然科学版)》 CAS 2007年第4期24-29,共6页 Journal of Soochow University(Natural Science Edition)
关键词 抛物系统 反馈控制 时滞 阶段结构 稳定性 parabolic system feedback controls time delay stage structure stability
  • 相关文献

参考文献10

  • 1Hamada T, Nakamura Y. On the oscillatory transient stage structure of yeast population [ J]. J Theoret Boil, 1982,99:797 - 805.
  • 2Aiello W G, Freedman H I. A time delay model of single-species growth with stage structure [ J ]. J Math Biosci, 1990,101:139 - 153.
  • 3许飞,侯燕,林支桂.带时滞的具有阶段结构的捕食抛物型方程组[J].数学学报(中文版),2005,48(6):1121-1130. 被引量:11
  • 4丁孝全,程述汉.具反馈控制的时滞阶段结构种群模型的稳定性[J].生物数学学报,2006,21(2):225-232. 被引量:16
  • 5Pao C V. Dynamics of nonlinear parabolic systems with time delays[J]. J Math Anal Appl, 1996,198:751 -779.
  • 6Pao C V. Nonlinear Parabolic and Elliptic Equations [ M ]. New York : Plenum, 1992.
  • 7Pao C V. Systems of parabolic equations with continuous and discrete delays [ J ]. J Math Anal Appl, 1997,205:157 -185.
  • 8Pang P Y H, Wang M X. Straegy and stationary pattern in a three-species predator-prey model[ J ]. J Differential Equations, 2004,200:245 - 273.
  • 9Wu J H. Theory and Applications of Partial Functional Differential Equations[ M ]. New York:Springer-Verlag, 1996.
  • 10Pao C V. Convergence of solutions of reaction-diffusion systems with time delays [ J ]. Nonlinear Anal, 2002,48:349 -362.

二级参考文献22

  • 1Pao C. V., Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Analysis, 2002,48: 349-362.
  • 2Hofbauer J., Sigmund K., The theory of evolution and dynamical systems, Cambridge: Cambridge University Press, 1988.
  • 3May R. M., Stability and complexity in Model ecosystems, Princeton: Princeton Univ. Press, 1974.
  • 4Teng Z. D., Permance and stability of Lotka-Volterra type N-species competitive system, Acta Mathematica Sinica, Chinese Series, 2002, 45(5): 905-918.
  • 5Alello W. G., Freedman H. I., A time-delay model of single species growth with stage tructure, Math. Biosci.,1990, 101:139 153.
  • 6Freedmann H. I., Wu J. H., Persistence and global asymptotic stability of single species dispersal models with stage structure, Quart. Appl. Math., 1991, 2: 351-371.
  • 7Gurney W. S. C., Nisbet R. M., Fluctuating periodicity, generation separation, and the expression of larval competition, Theor. Pop. Biol., 1985, 28: 150-180.
  • 8Liu S. Q., Chen L. S., Luo G. L. and Jiang Y. L., Asymptotic behaviors of competive Lotka-Volterra system with stage structure, J. Math. Anal. Appl., 2002, 271: 124-138.
  • 9Ou L. M., Luo G. L., Yang Y. L., and Li Y. P., The asymptotic behaviors of a stage-structured autonomous predator-prey system with time delay, J. Math. Anal. Appl., 2003, 283: 534-548.
  • 10Okubo A., Diffusion and ecological problems: mathematical models, Berlin, New York: Springer-Verlag, 1980.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部