摘要
建立了在含自旋-轨道耦合相互作用的二维介观多端格子模型中求解散射波函数,进而在Landauer-Buttiker框架中得到计算多端的电导和自旋电导,以及任意非平衡局域物理量(如电流驱动之下的非平衡自旋累积)的一般方法.作为散射波函数法的一个直接应用,我们研究了具有Rashba型自旋-轨道耦合的二维电子气的二端结构.在给定电流密度条件下,我们得到线性输运区的非平衡自旋累积效应的结果,发现与其它的理论结果和最近的实验结果是定性一致的.
We construct a general method to solve the scattering wave function for a two-dimensional multi-terminal mesoscopic system with spin-orbit coupling, and to calculate terminal conductance, spin conductance, and any non-equilibrium local physical quantities( e. g. , spin accumulation driven by electrical current). As a direct application of lattice scattering wave function method, we study spin accumulation effect in a two-terminal system with Rashba form of spin-orbit coupling. Under the condition of fixed charge current density, the results obtained in linear transport regime is in consistent with other theoretical as well as recent experimental results.
出处
《苏州大学学报(自然科学版)》
CAS
2007年第4期55-61,共7页
Journal of Soochow University(Natural Science Edition)
基金
浙江省自然科学基金资助项目(Y605167)
浙江师范大学科研资助项目(KYJ05053)
关键词
介观格子模型
多端电导
自旋-轨道耦合
自旋累积效应
mesoscopic lattice model
multi-terminal conductance
spin-orbit coupling
spin accumulation effect