期刊文献+

一种基于特征提取方法的智能预测算法 被引量:3

An intelligent prediction algorithm based on feature extraction methodes
下载PDF
导出
摘要 针对色织生产调度过程中的一类整经轴数预测问题,提出一种整经轴数智能预测算法.首先基于线性特征提取方法(PCA)和非线性特征提取方法(LLE)对影响整经轴数的多维属性参数进行特征提取;然后采用前向神经网络进行整经轴数预测.数值计算结果表明,所提出的方法能满足实际生产过程整经轴数预测的需要. An intelligent algorithm is proposed to predict the trim-beam number in the colored weaving scheduling process. Linear and nonlinear feature extraction methods including PCA and LLE are used to extract features from high-dimensional properties which are relative to the trim-beam number. Then, neural networks are applied to predict the trim-beam number. Numerical computational results based on practical production data show that the proposed algorithm can satisfy the trim-beam number prediction requirements in the practical manufacturing process.
出处 《控制与决策》 EI CSCD 北大核心 2007年第12期1377-1380,1389,共5页 Control and Decision
基金 国家重点基础研究计划项目(2002CB312200) 国家自然科学基金项目(60443009 60274045) 北京市科技计划重点项目(D0305005040321) 国家863计划项目(2006AA04Z163) 教育部新世纪优秀人才支持计划
关键词 特征提取 人工神经网络 预测 纺织 Feature extraction Artificial neural network Prediction Textile
  • 相关文献

参考文献10

  • 1Sklansky J, Wassel G N. Pattern classifiers and trainable machines[M]. New York: Springer-Verlag, 1981.
  • 2Duda R O, Hart P E. Pattern classification and scene analysis[M]. New York: John Wiley & Sons, 1973.
  • 3孙跃鹏,刘民,吴澄.面向色织生产过程的整经轴数智能预测算法[J].控制工程,2005,12(6):523-526. 被引量:6
  • 4Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 5Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323-2326.
  • 6Hadid A, Kouropteva O, Pietikainen M. Unsupervised learning using locally linear embedding: Experiments with face pose analysis[C]. ICPR'02. Quebec, 2002, VI: 10111.
  • 7Saul L K, Rowels S T. Think globally, fit locally: Unsupervised learning of low dimensional manifolds[J]. J of Machine Learning Research, 2004, 4(2) : 119-155.
  • 8Barron A R. Statistical properties of artificial neural networks[C]. Proc 28th Conf on Decision and Control. Tampa, 1989: 280-285.
  • 9Fahlman S E. An empirical study of learning speed in back-propagation networks [ R]. CMU-CS-88-162, Carnegie-Mellon University, 1988.
  • 10Scholkopf B, Smola A, Williamson R C, et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207-1245.

二级参考文献7

  • 1[1]Exner O.How to get wrong results from good experimental data:a survey of incorrect applications of regression[J].Journal of Physical Organic Chemistry,1997,10 (11):797-813.
  • 2[4]Duda R O,Hart P E,Stork D G.Pattern classification[M].New York:John Wiley & Sons,2001.
  • 3[5]Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 4[6]Gunn S R.Support vector machines for classification and regression[R].Southapton:Image Speech and Intelligent Systems Research Group,University of Southampton,1997.
  • 5[7]Barzilay Brailovsky V L.On domain knowledge and feature selection using a support vector machine[J].Pattern Recognition Letters,1999,20(5):475-484.
  • 6[8]Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2002,46(1):389-422.
  • 7高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-86. 被引量:241

共引文献5

同被引文献45

引证文献3

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部