期刊文献+

基于MPDFRFT的数字水印算法

Watermarking algorithm in multiple-parameter discrete fractional Fourier transform domain
下载PDF
导出
摘要 基于多参量离散分数阶Fourier变换(MPDFRFT)理论提出了一种数字水印算法,该算法首先将水印经Arnold变换进行置乱,然后根据分数阶Fourier变换具有空域和频域双域信息表达能力,分别对载体图象和所加水印进行不同阶次向量的多参量分数阶Fourier变换;将变换后的水印信息直接叠加到载体图象的特征区域内,然后进行反变换得到水印图象。在噪声、滤波、剪切和JPEG压缩等攻击方式下,对算法进行了鲁棒性分析,仿真实验结果表明该算法具有较强的鲁棒性和安全性。 An image watermarking algorithm was proposed based on multiple-parameter discrete fractional Fourier transform (MPDFRFT). The watermark was firstly scrambled with Arnold transform by the algorithm. Then the algorithm took the advantage of space and frequency double domain signal representation property of the fractional Fourier transform. The original image and the watermark sequence were fractional Fourier transformed with different order vector, and watermarking signal transformed by FRFT was added in the characteristic area, the final watermark image was obtained by inversely transforming the joint spectra. The robustness of the watermark under different attacks such as noise, filter, crop and JPEG compression had been numerically analyzed also. Simulation experiment demonstrats that this algorithm has better robustness and security.
作者 田沛 张兆祥
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2007年第6期101-104,共4页 Journal of North China Electric Power University:Natural Science Edition
关键词 数字水印 MPDFRFT 鲁棒性 digital watermarking, MPDFRFT, robustness
  • 相关文献

参考文献9

  • 1Hsu chiou-Ting, Wu Jaling. Hidden digital watermarks in images[J]. IEEE Trans On Image Processing, 1999, 8 (1):58-68.
  • 2刘正君,赵海发,朱邦和,刘树田.分数傅里叶域数字水印算法[J].光子学报,2003,32(3):332-335. 被引量:24
  • 3张峰,穆晓敏,杨守义,齐林.基于FRFT盲检测Chirp类数字水印算法[J].计算机工程与应用,2006,42(27):57-61. 被引量:8
  • 4F Q Yu, Z K Zhang, M H Xu. A digital watermarking algorithm for image based on fractional Fourier transform [J]. IEEE, ICIEA2006.
  • 5Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. J Inst Math Appl, 1980, (25) :241 - 265.
  • 6H. M. Ozaktas, D. Mendlovic. Fractional Fourier optics [J]. J. Opt. Soc. Amer. A, 1995,(12):743-751.
  • 7A. W. Lohmann. Image rotation, wigner rotation and the fractional Fourier transform[J]. J. Opt. Soc. 1993, (10) : 2181 - 2186.
  • 8Soo-Chang Pei, Min-Hung Yeh. A novel method for discrete fractional Fourier transform computation[J]. IEEE, 2001,585 - 588.
  • 9Wen-Liang Hsue, Soo-Chang Pei. The Multiple-Parameter Discrete Fractional Fourier Transform and Its ApplicationIJ]. IEEE, ICASSP2006:416 - 419

二级参考文献23

  • 1[1]Hsu Chiou-Ting,Wu Jaling . Hidden digital watermarks in images. IEEE Trans On Image Processing, 1999, 8(1): 58~68
  • 2[2]Pereira S,Voloshynoskiy S,Pun T. Optimal transform domain watermark embedding via linear programming. Signal Processing, 2001, 81(6): 1251~1260
  • 3[3]Voloshynoskiy S,Pereira S,Iquise V, et al. Attack modelling: towards a second generation watermarking benchmark. Signal Processing, 2001, 81(6): 1177~1214
  • 4[4]Tirkel A Z,Osborne C F,Hall T E. Image and watermark registration. Signal Processing, 1998, 66(3): 373~383
  • 5[5]Xia X,Boncelet C G,Arce G R. Wavelet transform based watermark for digital images. Optics Express, 1998, 3(12): 497~511
  • 6[6]Mendlovic D,Ozaktas H M. Fractional Fourier transforms and their optical implementation: I.J Opt Soc Am(A), 1993, 10(9): 1875~1881
  • 7[7]Lohmann A W.Image Rotation,wigner rotation and the fractional order Fourier transform.J Opt Soc Am(A), 1993, 10(10): 2181~2186
  • 8[8]Pei S C,Yeh M H. Improved discrete fractional Fourier transform. Opt Lett, 1997, 22(14): 1047~1049
  • 9Wong P W.A public watermark for image verification and authentication[C].In:Proc Int Conf on Image Processing,Chicago,Illinois,1998
  • 10Bender W,Gruhl D,Morimoto N.Technique for data hiding[R].Technical Report,MIT Media Lab,1994

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部