摘要
TiN coating was prepared by reactive plasma spraying in the Ar and N2 containing plasma jet. The resuits of XRD show that the TiN coating consists of TiN and Ti3 O, neither Ti2 N nor TiO2 phases. The toughening mechanism was characterized by analyzing the SEM morphologies of the TiN coating's indentation of microhardness and fracture surfaces. The results indicate that the coating possesses a high toughness. The adhesion strength among the TiN layers is 25.88 MPa, which is slightly lower than that of the Ni/AI bonding coating. The oxidation process of the RPS TiN coating is TiN→Ti3 O→TiO2.
TiN coating was prepared by reactive plasma spraying in the Ar and N2 containing plasma jet. The resuits of XRD show that the TiN coating consists of TiN and Ti3 O, neither Ti2 N nor TiO2 phases. The toughening mechanism was characterized by analyzing the SEM morphologies of the TiN coating's indentation of microhardness and fracture surfaces. The results indicate that the coating possesses a high toughness. The adhesion strength among the TiN layers is 25.88 MPa, which is slightly lower than that of the Ni/AI bonding coating. The oxidation process of the RPS TiN coating is TiN→Ti3 O→TiO2.
基金
Item Sponsored by Natural Science Foundation of China (50472033)
Natural Science Foundation of Hebei Province of China (503037)