期刊文献+

三阶非线性差分方程边值问题多个正解的存在性 被引量:2

Multiplicity of Positive Solutions of the Boundary Value Problem of Third-Order Nonlinear Difference Equation
下载PDF
导出
摘要 利用代数知识结合Guo-Krasnosel’skii不动点定理研究三阶非线性差分方程边值问题Δ3u(t-1)+f(t,u(t-1),u(t),u(t+1))=0,t∈Z(1,N),u(0)=0,u(N+2)=0多个正解存在的条件。 Making use of algebra theory and Guo - Krasnosel' skii fixed point theorem, the paper obtains the condition.s of the existence of more positive solutions of the boundary value problem of third -order nonlinear difference equation :△^3 u( t -1 ) +f( t, u(t- 1),u(t) ,u(t + 1)) =0,t ∈Z(1,N) ,u(0) =0,u(1) =0,u(N+2) =0.
作者 吴雄健
出处 《湖南第一师范学报》 2007年第4期154-156,共3页 Journal of First Teachers College of Hunan
关键词 不动点理论 非线性差分方程 边值问题 正解 algebra theory fixed point theorem nonlinear difference equations boundary value problem positive solution
  • 相关文献

参考文献1

二级参考文献3

  • 1Agarwal R P. Difference equations and inequalities [ M]. New York: Marcel Dekker, 1992.
  • 2Wong P J Y. Positive solutions of difference equations with two-point right focal boundary conditions [J]. J MA A, 1998, 224:34- 58.
  • 3Wong P J Y, Agarwal R P. On the existence of solutions of singular boundary value problems for higher order difference equations[J]. Nord Aria, 1997, 28:277 - 287.

共引文献3

同被引文献5

  • 1罗力军.二阶差分方程边值问题正解的存在性[J].广州大学学报(自然科学版),2004,3(6):501-503. 被引量:4
  • 2Eloe P.W., Difference equation and multipoint boundary value problems, Proc Amer. Math. Soc. 1982, 86:253-259.
  • 3Merdivenci F., Two positive solutions of a boundary value problems for difference equations, J. Differ. Equations Appl., 1995,(1):263-270.
  • 4Merdivenci F.Two positive solutions of a boundary value problems for difference equations[J].Differ Equations Appl,1995,1:263-270.
  • 5Agarwal R P,Henderson J.Positive solution and nonlinear problems for third-order difference equation[J].Comput Math Appl,1998,36:347-355.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部