期刊文献+

基于Brushlet变换的SAR图像地物目标分类

Targets classification in SAR image based on Brushlet transform
下载PDF
导出
摘要 Brushlet是一种新的图像方向信息分析工具,已被应用于纹理分割、分类以及去噪等领域.该文利用Brushlet变换为复函数这一特性,提取其能量及相位信息作为分类特征.通过对SAR图像中选出三类具有不同地貌特征的样本:道路平地、山脉和建筑物群的分类实验,仿真结果证明较之单一能量特征的分类方法,Brushlet能量及相位特征能有效地区分不同特征的地物目标. Brushlet transform is a new tool for analyzing directional information in images,which has been widely used in texture segmentation,classification and denoising etc.The complex function characteristics of the Brushlet transform is utilized to extract,as the classification features,the power and phase information.Three kinds samples of SAR images with different physiognomy features,i.e.,roads,mountains and buildings,are chosen for classification experimentations,and the simulation results show that the classification method with features composed of the Brushlet power and phase can outperform the method with only the power feature.
作者 杨新艳 肖竹
出处 《苏州大学学报(自然科学版)》 CAS 2007年第3期60-64,共5页 Journal of Soochow University(Natural Science Edition)
基金 国家自然科学基金资助项目(60505010)
关键词 BRUSHLET变换 能量特征 相位特征 SAR图像 Brushlet transform power feature phase feature SAR image
  • 相关文献

参考文献13

  • 1Baraldi A,Parmiggian F.An investigation of the texture characteristics associated with Gray Level Co-occurrence Matrix statistical parameters[J].IEEE Trans On Geoscience and Remote Sensing,1995,33(2):293-303.
  • 2Weldon T,Higgins W E,Dunn D F.Efficient Gabor-filter design for texture segmentation[J].Pattern Recognition,1996,29(12):2005-2016.
  • 3Laine A,Fan J.Texture classification by wavelet packet signatures[J].IEEE Trans Pattern Anal Machine Intell,1993,15(11):1186-1191.
  • 4焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 5Meyer F G,Coifman R R.Brushlet:a tool for directional image analysis and image compression[J].Appl Comput Harmon Anal,1997,4(2):147-187.
  • 6Candés E J.Ridgelets:theory and applications[D].Standford:Stanford Univ.,1998.
  • 7Candés E,Donoho D.Curvelets[R].Stanford:Stanford Univ,1999.
  • 8Velisavljevic V,Beferull-Lozano B,Vetterli M,et al.Approximation power of directionlets[C].the International Conference on Image Processing.Genora,Italy.11~14,sept,2005,741-744.
  • 9Chen Chibiao,Liu Jun,Chan K L.Texture discrimination using Brushlet features:PACRIM 2001:2001 IEEE Pacific Rim Conference on Communications,Computers and signal Processing.Victoria,2001[C].Canada,c2001.
  • 10Shan Tan,Zhang Xiangrong,Jiao Licheng.A Brushlet-based feature set applied to texture classification[J].CIS 2004,LNCS 3314,1175-1180.

二级参考文献58

  • 1[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 2[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 3[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 4[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 5[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.
  • 6[5]M N Do, M Vetterli. Contourlets[ A ] .J Stoeckler, G V Welland. Beyond Wavelets [ C ]. Academic Press, 2002.
  • 7[7]D L Donoho,M Vetterli,R A DeVore, I Daubechies. Data compression and harmonic analysis [ J ]. IEEE Trans, 1998, Information Theory-44(6) :2435 - 2476.
  • 8[8]M Vetterli. Wavelets, approximation and compression [ J ]. IEEE Signal Processing Magazine,2001,18(5) :59 - 73.
  • 9[9]R A DeVore. Nonlinear approximation[ A].Acta Numerica[ M]. Cambridge University Press, 1998.
  • 10[10]D L Donoho. Sparse component analysis and optimal atomic decomposition[J]. Constructive Approximation, 1998,17:353 - 382.

共引文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部