期刊文献+

基于T检验和特征项目分析的入侵检测研究 被引量:1

Intrusion Detection Based on T-test and Characteristic Analysis
下载PDF
导出
摘要 在入侵检测中,部分TCP连接的特征对入侵检测没有帮助,反而影响了检测的速度和性能。因此,本文提出使用独立样本T检验的方法对TCP连接的特征进行分析,删除那些不具有区分特性的特征项目。对DAR-PA KDD CUP 99的入侵检测数据分析之后,发现在41个特征中仅有30个特征对入侵检测有用,其他11个特征是冗余的。用支持向量机进行检测的结果表明,应用30个特征比应用41个特征进行检测的效果和速度更好。 Some features of the TCP connection are useless in the intrusion detection speed and accuracy. In order to select intrusion detection, and what is more ,they lower the useful TCP connection features, T-tests of independent samples are utilized to analyze the items of characteristics. The features that cannot be used to distinguish the normal connection and the intrusion connection are deleted in detection. By analysing DARPA KDD CUP99 dataset, it is found that only 30 out of 41 features are useful for intrusion detection. Through the SVM based intrusion detection method, it is shown that the results of using 30 features are better than using 41 features.
出处 《铁道学报》 EI CAS CSCD 北大核心 2007年第6期113-117,共5页 Journal of the China Railway Society
基金 教育部新世纪优秀人才支持计划(NCET-05-0797)
关键词 入侵检测 T检验 支持向量机 intrusion detection T-test support vector machine
  • 相关文献

参考文献12

  • 1J P Anderson. Computer Security Threat Monitoring and Surveillance[R]. Fort Washington, Pennsylvania: James P Anderson Cor, 1980.
  • 2TENG H S, CHEN K, LU S C. Adaptive Real-Time Anomaly Detection Using Inductively Generated Sequential Patterns [C]// Proceedings of the IEEE Symposium on Research in Security and Privacy. Oakland CA: 1990,12 (4):278-284.
  • 3LUNT T F, TAMARU A, GILHAM F, et al. A RealTime Intrusion Detection Expert System (IDES)-Final Technical Report[R]. Menlo Park, California, Computer Science Laboratory, SRI International, 1992.
  • 4Wenke Lee, Sal Stolfo, Kui Mok. Adaptive Intrusion Detection: A Data Mining Approach [J]. Artificial Intelligence Review, 2000,14 (6) : 533-567.
  • 5H Debar, M Becke, D Siboni. A neural network component for an intrusion detection system [C]//Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, 1992.
  • 6Y Qiao, X W Xin, Y Bin , S Ge. Anomaly intrusion detection method based on HMM [J]. Electronics Letters, 2002, 38(13).
  • 7陈光英,张千里,李星.基于SVM分类机的入侵检测系统[J].通信学报,2002,23(5):51-56. 被引量:40
  • 8李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79
  • 9尹清波,张汝波,李雪耀,王慧强.基于线性预测与马尔可夫模型的入侵检测技术研究[J].计算机学报,2005,28(5):900-907. 被引量:29
  • 10Nong Ye, Yebin Zhang, Connie M Borror. Robustness of the Markov-Chain Model for Cyber-Attack Detection[J]. IEEE Transactions on Reliability, 2004,53(1): 116-123.

二级参考文献21

  • 1尹清波,张汝波,李雪耀,王慧强.基于动态马尔科夫模型的入侵检测技术研究[J].电子学报,2004,32(11):1785-1788. 被引量:9
  • 2张千里.CCERT的建议和入侵检测系统的研究[M].北京:清华大学,2000..
  • 3张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995..
  • 4Ye N. A Markov chain model of temporal behavior for anomaly detection. In: Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop, West Point, NY, 2000, 166~169
  • 5Jha S., Tan K., Maxion R.A., Roy A. Markov chains, classifiers and intrusion detection. In: Proceedings of the 14th IEEE Computer Security Foundations Workshop, Cape Breton, Nova Scotia, 2001, 206~219
  • 6Hofmeyr S.A., Forrest S., Somayaji A. Intrusion detection using sequences of system calls. Journal of Computer Security, 1998, 6(3): 151~180
  • 7Lee W., Dong X. Information-Theoretic measures for anomaly detection. In: Proceedings of the 2001 IEEE Symposium on Security and Privacy, Oakland, California, 2001, 130~143
  • 8Eskin E., Lee W., Stolfo S.J. Modeling system calls for intrusion detection with dynamic window sizes. In: Proceedings of the DARPA Information Survivability Conference and Exposition II (DISCEX II), Anaheim, CA, 2001, 165~175
  • 9Yeung D., Ding Yu-Xin. Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognition, 2003, 36(1): 229~243
  • 10Rabiner L., Juang B. Fundamentals of Speech Recognition. Prentice-Hall International Inc, 1993

共引文献137

同被引文献30

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部