摘要
以矩形求积公式为例,推导出多周期复化矩形求积公式的收敛因子.讨论了收敛因子中单次迭代周期数、单周期采样点数、采样信号的谐波次数和周期计算误差等参数变化对收敛因子的影响,并以实际应用中的计算速度和收敛速度作为判断计算效率的标准.得到了在实际应用中减小单次迭代周期数和单周期采样点数能够得到较高计算效率的结论.
Using the rectangular quadrature formula as a basis, the convergence factor of a multi-period compound rectangular quadrature formula was derived. The influence of changes of parameters on the convergence factor is discussed, including changes to the number of periods in a single iteration, to the number of sampling points in a single period, to the number of harmonic waves, and computational errors of period. In this paper, with computation speed and convergence rate in applications as the criteria of computational efficiency, we draw the conclusion that decreasing the number piing points allows higher computation efficiency in applications.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2007年第11期1218-1221,共4页
Journal of Harbin Engineering University
基金
航天支撑基金资助项目(2003HG20)
关键词
准同步采样
数值求积
参数选择
quasi-synchronous sampling
numerical quadrature
selection of periods and the number of sam of parameters