期刊文献+

神经网络集成方法在产品完工期预测中的应用 被引量:9

Application of neural network ensemble in prediction of product due date
下载PDF
导出
摘要 针对单个神经网络模型易出现过拟合而导致泛化能力较弱的缺点,引入了神经网络集成方法,对传统的Bagging方法进行改进,提出了一种基于0.632误差聚类的Bagging方法。通过实验对比和假设检验,证实了该方法的优越性,并探讨了最佳聚类数目。最后,通过应用实例展示了利用集成神经网络进行产品完工期预测的全过程。实验结果显示,该方法明显地提高了预测精度。 To overcome the poor generalization ability of a single neural network resulting from the over fitting,neural network ensemble was introduced,and a new Bagging approach based on the cluster analysis of the 0.632 prediction error was proposed.Advantages of this proposed method was validated by experimental comparison and hypothesis test.The best number of clusters was also discussed.Finally,a case study was given to illustrate the whole steps to predict the product due date by using neural network ensemble.Results showed that this model could remarkably improve precision of prediction results.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2007年第11期2140-2144,共5页 Computer Integrated Manufacturing Systems
基金 国家973计划资助项目(2005CB724100) 国家自然科学基金资助项目(50675082)。~~
关键词 产品完工期 预测建模 神经网络集成 聚类分析 product due date predictive modeling neural network ensemble cluster analysis
  • 相关文献

参考文献10

  • 1SONG D P, HICKS C, EARL C F. Product due date assignment for complex assemblies [J]. International Journal of Pro duct on Economics, 2002,76(3) :243-256.
  • 2VAN OOIJEN H P G, BERTRAND J W M. Economic duedate setting in Job-Shops based on routing and workload de pendent flow time distribution functions [J]. International Journal of Production Economics, 2001,74(1):261-268.
  • 3GORDON V, PROTH J, CHU C. A survey of the state-of-the-art of common due date assignment and scheduling research [J]. European Journal of Operational Research, 2002, 139(1) :1-25.
  • 4HORNIK F M, STINCHCOMBE M, WHITE H. Multilayer feed forward networks are universal approximators [J]. Neural Networks, 1989,2(2) :359-366.
  • 5HANSEN L K, SALAMON P. Neural network ensembles [J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 1990,12(10) :993-1001.
  • 6BREIMAN L. Bagging predictors [J]. Machine Learning, 1996,24(2) :123-140.
  • 7李凯,黄厚宽.一种提高神经网络集成差异性的学习方法[J].电子学报,2005,33(8):1387-1390. 被引量:9
  • 8FU Q, HU S X, ZHAO S Y. Clustering based selective neural network ensemble [J]. Journal of Zhejiang University Science, 2005,6A(5):387-392.
  • 9EFRON B. Estimating the error rate of a prediction rule: some improvements on cross-validation [J]. Journal of the American Statistical Association. 1983,78 (5) : 316-331.
  • 10FENG, C X, WANG, X F. Surface roughness predictive modeling, neural networks versus regression [J]. IIE Transactions, 2003, 35(1):11-27.

二级参考文献12

  • 1Dietterich T G. Machine learning research: four current directions[J].AI Magazine, 1997,18 (4):97- 136.
  • 2Hansen LK,Salamon P.Neural network ensembles[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,12(10) :993 - 1001.
  • 3Krogh A, Vedelsby J. Neural network ensembles, cross validation,and active learing[A] .Tesauro G,Touretzky D S and Leen T K,eds, Advances in Neural Information Processing Systems 7 [C]. Cambridge,MA, MIT Press, 1995.231 - 238.
  • 4Partridge D, Yates W B. Engineering multiversion neural-net systems[J]. Neural Computation, 1996, 8(4) : 869 - 893.
  • 5Opitz D W,Shavlik J W. Actively searching for an effective neural-network ensemble[J]. Connection Science, 1996,8(3/4) :337 - 353.
  • 6Zhou Z H,Wu J X,Tang W. Ensembling neural networks: many could be better than all[J] .Artificial Intelligence, 2002, 137( 1 - 2) :239 -263.
  • 7Imamura K,Soule T, Heckendom B B,et al. Behavioral diversity and a probabilistically optimal GP ensemble[J]. Genetic Programming and Evolvable Machines,2003,4(3) :235 -253.
  • 8Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123 - 140.
  • 9Freund Y, Schapire R E. Experiments with a new boosting algorithm [A]. Saitta L Proc of the 13^th ICML-96[C]. San Francisco, Morgan Kaufimann, 1996.148 - 156.
  • 10Kuncheva L, Whitaker C. Measures of diversity in classifier ensembles and their relationship with ensemble accuracy[J] .Machine Learning ,2003,51(2):181-207.

共引文献8

同被引文献113

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部