期刊文献+

基于经验数据分解的干涉多光谱图像压缩算法

Compression of interferential multispectral images based on empirical data decomposition
下载PDF
导出
摘要 针对干涉多光谱图像数据的非平稳特性,提出一种经验数据分解的图像压缩算法.经验数据分解利用干涉曲线数据的局部特性和变化规律,将其分解为局部区域数据和值以及差值数据,从而实现对非平稳数据的多分辨率分析.本压缩算法首先利用经验数据分解方法去除干涉多光谱图像数据的相关性,并提出对应的二维多级分解结构.最后对分解系数采用改进的EBCOT算法进行编码.实验结果表明,与JPEG2000标准相比,本算法在无损压缩时输出码率平均下降0.15比特/像素,而有损压缩的重建图像质量提高1.1~2.5 dB,同时降低恢复光谱的相对二次误差,有效的保护了光谱信息. Due to the non-stationary property of interferential multispectral image data, a novel compression algorithm for interferential multispectral images with proposed Empirical Data Decomposition (EDD) is presented. EDD can make a multi-resolution analysis of the non-stationary interferential data. With its local characteristic and variation tendency, the non-stationary interferential data are decomposed by EDD into two parts: the sum of local region data and the difference data. In this paper, EDD is first utilized for interferential multispectral image data de-correlation, and a corresponding 2-D decomposition structure is presented as well. The decomposition coefficients are finally coded with the modified EBCOT. Experimental results show that, compared with the JPEG2000 standard, the proposed algorithm decreases the average output ratio by about 0. 15 bit/pixel for lossless compression, and improves the reconstructed images by 1.1 -2.5 dB. The algorithm also reduces the Relative spectral Quadratic Error(RQE) and protects the spectral information efficiently.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期900-905,共6页 Journal of Xidian University
基金 国家自然科学基金资助(60507012) 国家自然科学基金重点项目资助(60532060)
关键词 图像压缩 干涉多光谱图像 经验数据分解 image compression interferential multispectral image empirical data decomposition
  • 相关文献

参考文献12

二级参考文献20

  • 1Horton R F. Optical design for a high etendue imaging Fourier transform spectrometer. Proc SPIE, 1996,2819: 300~315.
  • 2Kim T S,Kim S J,Kim B J, et al. Multispectral Image Data Compression Using Classified Prediction and KLT in Wavelet Transform Domain. Proc. of ITC-CSCC2002. 2002. 204~207.
  • 3Taubman D. High performance scalable image compression with EBCOT. IEEE Trans on Image Processing, 2000, 9(7) :1158 ~ 1170.
  • 4Christopoulos C, Askelf J, Larsson M. Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard. IEEE Signal Processing Letters ,2000,7(9):247-249.
  • 5Jerome M Shapiro. Embedded image coding using zerotrees of wavelet coefficients[J]. IEEE Transactions on Signal Processing,1993,41(12): 3445-3462.
  • 6Amir Said, William A Pearlman. A new fast and efficient image coded based on set partitioning in hierarchical trees[J]. IEEE Transactions on Circuits and Systems for Video Technology,1996, 6(3) :243-250.
  • 7Michael W Marcellin, Ali Bilgin, Michael J Gormish, et al. An Overview of JPEG2000[A]. Proc of IEEE on Data Compression Conference[C]. 2000. 523-541.
  • 8Jin Li, Shawmin Lei. An embedded still image coder with rate-distortion optimization[J]. IEEE Trans on Image Processing, 1999, 8(7): 913-924.
  • 9Xiong Zi-xiang, Wu Xiao-lin. Wavelet image coding using trellis coded space-frenquency quantization[J]. IEEE Signal Processing Letters, 1999, 6(7):158-161.
  • 10David Taubman. High performance scalable image compression with EBCOT[J]. IEEE Trans on Image Processing, 2000, 9(7): 1158-1170.

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部